
  

markup markup markup 
 April 2008      Issue 13         [it’s all here] 

SCRIPT OF THE MONTH 

DDDSSS___GGGRRRIIIDDD___SSSEEETTT___GGGRRRIIIDDD___RRREEEGGGIIIOOONNN:::   FFFiiixxxeeeddd   

DEVELOPMENT JOURNAL 

GGGoooddd   ooofff   RRRoooccckkk   

STEP-BY-STEP TUTORIALS 

AAAIII   CCCooommmmmmaaannnddd   SSStttaaaccckkk   

GAME MAKER INSIGHT 

PPPeeerrrsssiiisssttteeennnttt   vvvsss...   GGGlllooobbbaaalll   
AND MUCH MORE! 

AAArrrtttiiifffiiiccciiiaaalll   IIInnnttteeelllllliiigggeeennnccceee:::   
aaa   ppprrraaaccctttiiicccaaalll   aaapppppprrroooaaaccchhh!!!   

NNNeeewww   tttooo   MMMaaarrrkkkUUUppp   MMMaaagggaaazzziiinnneee:::   
DDDaaavvviiiddd   PPPeeerrrrrriiitttttteee’’’sss   MMMuuusssiiiccc   
CCCooommmpppooosssiiitttiiiooonnn   TTTuuutttooorrriiiaaalllsss!!!    



 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  22  

E
d

ito
r’s D

e
sk

 

  

Welcome 

But, now I feel I must apologize for our antics with the fake launch of our 

Issue 13.  From the bottom of our hearts here at MarkUp, we’d like to say: 

“We got ya!” 

Cloud Gaming 

While we don’t hear the term “Cloud Gaming” specifically frequently, it is 

impossible to identify that this trend exists in the gaming world as well. When it 

comes to software in general, there’s a general shift towards the concept of 

Cloud Computing or ‘computing in the cloud’ as they call it. Applications like 

Google Docs and Live Mesh are emerging, as well as attempts to create web 

“operating systems” that are accessed from within a browser. 

The general purpose of cloud computing is to make applications, etc. accessible 

from the web and executed directly from there rather than have such process 

occur locally. 

When it comes to gaming, such trend is more complicated. While games like 

Flash games are (from a user standpoint) completely located in the web and is 

run after being ‘buffered’, when it comes to ‘serious’ commercial gaming, such 

trend is much harder to achieve. The reason for this is that the main trend in 

commercial gaming is realism, which counters cloud gaming, since it results in 

huge amounts of data that cannot be only stored in the cloud and retrieved by 

the computer. 

Instead, the furthest current-day commercial gaming can go into cloud gaming is 

with MMORPGs such as Guild Wars and World of Warcraft, where user 

interaction and the entire gameplay both replies on and occurs in the cloud, the 

main files, models, resources, and executables responsible for letting such thing 

happen exist locally. 

It’ll be interesting to see how gaming develops as cloud computing develops as 

well, who knows if such predictions will come true entirely or turn out to be 

completely mistaken. 

Eyas Sharaiha 

■ 

 

 

Contributors 

Robin Monks  Sr. Editor 

Eyas Sharaiha  Editor 

Bart Teunis  Writer 

Philip Gamble  Writer 

Matthew Malone Writer 

David Perritte  Writer 

Joshua Smith  Writer 

Darragh Tobin  Writer 

icuurd12b42  Writer 

Veeti Paananen  Writer 

Zach Hext  Writer 

Table of Contents 
Editor’s Desk ........................................ 2 

YoYo Games and the Community ......... 3 

Decompilers ......................................... 4 

Script of the Month .............................. 5 

Development Journal: God of Rock ....... 7 

Music Theory and Composition ............ 8 

Persistent vs. Global ............................ 9 

Beginning Theoretic AI ....................... 11 

Efficient Source Code.......................... 13 

AI Command Stack ............................. 17 

Split Screen ......................................... 21 

Elemence Aux ..................................... 23 

Instant Play ........................................ 24 

  

Since first appearing on computers a year and a 

month ago, MarkUp has found its place in the hearts 

of many Game Maker users. 

Editor’s Desk 



 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  33  

E
d

ito
ria

l 
  

YoYo Games and the Community 

Editorial 

Most of this criticism is about poor customer service and 

problems with the Digital Rights Management that is used 

to protect Game Maker 7. 

YoYo Games’ relationship with users, in particular 

members of the GMC, has until recently been poor.  Their 

infrequently updated glog did not address the issues that 

mattered to members and instead seemed to be looking 

far into the future. 

Recently though that has all begun to change; it started 

with a long overdue upgrade of the Invision Power Board 

software used to power The Game Maker 

Community.  Along too came a new server, effectively 

eliminating the MySQL overload errors that had in the 

past plagued the forum at popular times of day.  A skin 

change made the forum look warmer and more 

welcoming, a reintroduction of post count and an increase 

in the size of Personal Mail inbox in response to member 

demands have made things better.   

YoYo Games staff, Mark Overmars and in particular Sandy 

Duncan have also begun to post more actively at the GMC, 

something which ideally should have happened right from 

the takeover. 

The dual communities of the YoYo Games forum and GMC 

don’t make sense, as tuntis wrote on Game Maker Blog, 

this is "decentralizing the community".  The YoYo Games 

forum appears to serve no purpose other than as a general 

chit chat area for what appears to be the less mature 

Game Maker users.  I believe the official word on this one 

is that the YoYo Games forum is for gamers where as the 

GMC is for developers. 

In February Sandy quietly mentioned on his blog that 

YoYo plan to invest $5M into the Game Maker software 

and their website in the coming years.  Many members are 

disappointed at the lack of apparent progress with the 

development of Game Maker which has seen no new 

releases for nearly a year, despite the emergence of a 

game decompiler.  It is also not specified how much of this 

funding will be invested into the Game Maker software as 

opposed to developing and promoting the YoYo Games 

website. 

An attempt to take Game Maker cross-platform with work 

starting on a Mac version of Game Maker was also met 

with a mixed response with some users suggesting that 

YoYo Games' time would be better spent improving the 

PC version instead of targeting what remains a very small 

market. 

One universally popular move has been the two Game 

Maker competitions that YoYo have run, which with the 

results of the ancient civilization competition announced 

in early May will see YoYo having handed out $3,500 of 

cash prizes to users of the software.  No other Game 

Maker competitions have come close on the number of 

entries received and value of prizes awarded. 

Sandy has also made some frank admissions about YoYo 

Games writing on the GMC "I think, at times, that the DRM 

sucks and I think, always, that our customer support is 

terrible."  Many community members would have set that 

many months back, let's hope that now YoYo Games are 

sure of their problems something gets done about this 

quickly. 

■ 

 

 

Since appearing on the Game Maker scene at the start of 2007 YoYo Games have faced 

criticism from certain members of the community.  

Philip Gamble 



 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  44  

E
d

ito
ria

l 
  

Decompilers 

An exclusive from GameMakerBlog.com 

What is the decompiler?  
At the end of January a program was released that enables 

anyone who has it to decompile executable files created 

with Game Maker versions 5.3a, 6, 6.1 and 7. The original 

resources, scripts and objects programmed into the game 

are retrieved and organised as they would be if you were 

editing the game. In effect this is an .exe to 

.gmd/.gm6/.gmk converter. 

Why do some people see this as a problem?  
Many people weren't too happy at the release of the 

decompiler. YoYo Games weren't happy because it shows 

that the security on their product has been breached and 

the authors of the decompiler have breached their EULA. 

Some users of Game Maker fear that their games will be 

decompiled, their resources and code stolen and that the 

game could possibly be passed off by someone else as 

their own work. The chances of this happening to your 

game are very slim, I am not aware of any games that have 

been released where the authors have been accused of 

decompiling a previously made game. 

Can anything be done to protect my game? 
At the GMC many people [1, 2, 3] have come up with 

programs which they claim will protect your executable 

Game Maker files. So far all of them have not been able to 

live up to their claims, as most of them simply compress 

the .exe and uncompress it (to its unprotected form) 

before running it. 

Will my game ever be 100% safe? 
The simple answer is No. Now hackers have seen that it is 

possible to decompile Game Maker games chances are 

they will develop a solution to any anti-decompiling 

measures that are introduced. 

What are YoYo Games doing? 
Good question. Apart from "Just don't do it or you'll get into 

trouble" and a threat to take action against those who 

wrote the decompiler it doesn't look like YYG are doing 

much. They promised "we do our best to make sure this 

can't happen with future releases of Game Maker AND the 

website.", yet no patch has been released almost 2 months 

after the decompiler was released. 

What should I do? 
 Firstly don't panic. It is unlikely that someone will 

steal your program. 

 Don't believe these so-called 'decompiler 

protectors'. All released so far do not work. 

 If you are concerned contact YoYo Games and ask 

them why they still haven't released a patch or a 

new version of Game Maker, 2 months after the 

decompiler was released. 

Initial source of news: Decompiler announcement at 

gmnews 

 

 

You may have noticed that despite all the talk of decompilers elsewhere recently Game 

Maker Blog has remained a decompiler-free zone. 

Philip Gamble 

■ 

 

http://gamemakerblog.com/
http://gmc.yoyogames.com/index.php?showtopic=366641
http://gmc.yoyogames.com/index.php?showtopic=355103
http://gmc.yoyogames.com/index.php?showtopic=367117
http://glog.yoyogames.com/?p=62
https://yoyogames.mojohelpdesk.com/req/
http://gmnews.scorptek.net/2008/01/27/full-gm-decmpiler-in-the-wild/
http://gmnews.scorptek.net/2008/01/27/full-gm-decmpiler-in-the-wild/
http://gmnews.scorptek.net/2008/01/27/full-gm-decmpiler-in-the-wild/


 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  55  

F
e

a
tu

re
s 

  

Script of the Month 

An exclusive from GMLscripts.com 

‘Fixing’ Functions 
This function provides an excellent example of how we can 

use scripts to temporarily replace buggy functions in 

Game Maker; when a script is created with the same name 

as the function, the script will basically override the 

function and therefore using the function’s name will 

result in the calling of the script instead. If the function is 

fixed in a later version of Game Maker (yet it has the same 

format), then you can easily convert your source to the 

latest version of Game Maker and delete the fixing script, 

then, all the code you used to refer to the script will 

automatically refer to the function of the same name 

instead, thus creating little or no issues in keeping your 

source code updated. 

GMLscripts.com owner “xot” comments: 

“One of the interesting ideas that this demonstrate 

is that GM's built-in functions can be replaced with 

custom scripts by giving the script the same name. 

Working that way lets you cleanly handle bugs in 

the Game Maker engine. When the bug is one day 

fixed, all you have to do is remove your script and 

everything else will work the same.” 

What the Script Does 
The script basically copies a certain region of a certain list 

into another. The grid which the values are copied to is the 

first argument, id, and the source is the grid which the 

values are copied from. The x1,y1,x2,y2 arguments get the 

coordinates of the region you want to be copied from the 

source. The xpos,ypos arguments indicate the x and y 

positions where the grid region will be pasted, i.e. where 

the “x1,y1” item will be located. 

The Script 

Usage 

ds_grid_set_grid_region(id,source,x1,y1,x2,y2,xpos,ypos) 

Arguments 

id  destination ds_grid to copy values to 

source   source ds_grid to copy values from 

x1,y1  upper-left corner of the region to be  

  copied 

x2,y2  lower-right corner of the region to be  

  copied 

xpos,ypos position in the destination to copy values  

  to 

Returns 

Nothing. 

Notes 

This function replaces the buggy Game Maker 7 version of 

the same name. It also adds the same functionality to 

Game Maker 6. 

 

 

 

 

 

 

 

 

 

 

Game Maker’s ds_grid_set_grid_region function has the potential to be very beneficial to 

game developers, however, the function appears to be buggy in Game Maker 7 and does 

not behave expectedly. Therefore, GMLscripts.com comes to the rescue again, to provide 

a replacement script with the same name to fix the functionality in Game Maker 7! 

Eyas Sharaiha 

http://gmlscripts.com/


 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  66  

F
e

a
tu

re
s 

  

Script of the Month Cont. 

An exclusive from GMLscripts.com 

{ 
    var copy,xoff,yoff,i,j; 
    if (argument0 != argument1) copy = -1; 
    else { 
        copy = ds_grid_create(argument4+1,argument5+1); 
        for (i=argument2; i<=argument4; i+=1) { 
            for (j=argument3; j<=argument5; j+=1) { 
                ds_grid_set(copy,i,j,ds_grid_get(argument1,i,j)); 
            } 
        } 
        argument1 = copy; 
    } 
    xoff = argument6-argument2; 
    yoff = argument7-argument3; 
    for (i=argument2; i<=argument4; i+=1) { 
        for (j=argument3; j<=argument5; j+=1) { 
            
ds_grid_set(argument0,i+xoff,j+yoff,ds_grid_get(argume
nt1,i,j)); 
        } 
    } 
    if (copy != -1) ds_grid_destroy(copy); 
} 
 

Conclusion 
This script can be very useful in many conditions; grids in 

games sort all kinds of two-dimensional data, including 

player and enemy positions, items, inventories, etc. When, 

for example, a new enemy is created, or the same 

situation or ‘pattern’ of data repeats itself, this pattern 

could be easily copied from one place to another – 

something that should have been available from Game 

Maker ‘out of the box’, but was unfortunately flawed. 

Now, we have the chance of using that functionality again. 

 

Eyas Sharaiha 

■ 

 

File Extension 1.0 

Q
u

ick
 R

e
vie

w
s 

The ‘File Extension’ by SyncViews is an excellent Game 

Maker extension for reading and handling various types 

of files. The extension can write various data and read it 

from files, such as strings and signed/unsigned short data 

to binary files, points to path files, and, my all time 

favorite: all sorts of data to CSV files. If you remember 

reading the ‘CSV: Extreme Data Storage’ article from 

issue 4 you’ll know how much CSV files could be helpful 

for data storage, and this script provides all the functions 

described in the article and more, using a single line of 

code! 

gmc.yoyogames.com/index.php?showtopic=364768 

Ad Nauseam 2 

Game Maker developer ‘cactus’, most famous for his 

multi indie gaming award winning “Clean Asia” has 

released another unique Game Maker game: Ad 

Nauseam 2. This is an incredibly action-packed shoot-

em-up game with its number one objective “blow stuff 

up before it hits you” – and as cactus explains, there’s no 

room or time to allow you to doge and avoid anything 

that’d damaging, you must only face it. 

www.yoyogames.com/games/show/33006 

G
a

m
e

 S
p

o
tlig

h
t 

http://gmlscripts.com/
http://markup.gmking.org/issue/4
http://gmc.yoyogames.com/index.php?showtopic=364768
http://www.yoyogames.com/games/show/33006


 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  77  

Jo
u

rn
a

ls 
  

 

 

 

 

 

 

 

MarkUp Advertising                    http://www.reflectgames.com/  

God of Rock 

Development Journal 

After all of that, I will begin coding the "Advanced Note 

Editor Program" which may eventually be distributed to 

the players. But, unfortunately this will delay the release 

of the new demo even more, but will result in very 

professional and well-made note charts. 

Once I get that set up, I will be adding the option of 3D. 

One of the exclusive things that will be in the 3D version is 

lighting.  Luckily, this will be easy, since GM has easy-to-

use lighting functions. Another thing that will be exclusive 

in the 3D version is a couple of stage models or, just a 

stage background. 

Some of you guys were wondering about the online and 

multiplayer also, these modes are almost done, a matter 

of fact, the current GOR demos have enough data in them 

to enter the lobby but it's all cut off by one line of code.  

Some of the features the online version will have are: Pro 

Face Offs, Battles, and Co-Op. Pro Face Off being two 

players playing and the one to hit more notes wins, as for 

Battles it’s the same as Guitar Hero III except, I plan to add 

more power ups.   

Co-Op would be where one player plays Lead and the 

other plays Bass/Rhythm. Well, those are all the features 

that will be in God of Rock. And this concludes the April 

God of Rock Development Journal. 

■ 

 

 

I have finally begun to code some sort of a BPM system into God of Rock. So far it's not 

going too good due to GM's horrible precision problems. But, I am going to continue 

working on it in GM7 because I have heard the issues where corrected in that version.  

And having a bigger EXE but, better math precision is worth it.   

Matthew Malone 

http://www.reflectgames.com/


 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  88  

T
u

to
ria

ls 
  

Music Theory and Composition 

Tutorial 

Let me begin by stating that I am writing these articles 

expecting you know the basics of reading music. (Knowing 

the musical alphabet) 

Article 1: Major Scales, the Rudiment of 

Music Composition 
A major scale can be classified as a rudiment of basic and 

complex music composition. It is a building block for 

several different kinds of scales, and can easily be skewed 

to create different sounds. First lets take the look at the 

format of a major scale: 

Key: 

 H=half step 

 W=whole step 

1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 

  W  W   H   W  W  W  H 

So the eight notes of the scale are split in this way. You 

can start on any note and create the major scale by 

increasing each note by the indicated whole step or half 

step. So for example let’s take C and create the major 

scale: 

C v D v E v F v G v A v B v C 

   W   W   H   W  W    W   H 

It’s really simple to build! The main importance of the 

major scale is the ability to change a few notes to create a 

different sound or scale. Learning your major scales can 

increase the quality of your composition. It adds a lot of 

stuff to your musical vocabulary when you learn these 

changes. Most seasoned musicians and composers will 

agree that this is an important first step to building music 

successfully. 

Example 

C-Major 

C v D v E v F v G v A v B v C 

   W   W   H   W  W    W   H 

To convert this to a minor scale, simply add 3flats to the 

key signature. In this case we add Bb, Eb, and Ab. 

C-Minor 

C v D v Eb v F v G v Ab v Bb v C 

   W   H     W   W   H      W   W 

You can see that the whole step and half step format 

changes, this set up is characteristic of the minor scale and 

you can create a minor scale if you start on any note and 

adjust the note based on the indicated whole step or half 

step intervals. 

As you can see its very easy to adjust the major scale to 

create a new and different scale/sound. This is why they 

are considered a rudiment in composition and theory.  

I would like to answer questions you might have regarding 

anything about music theory and composition. Feel free to 

e-mail me at mischiephX@yahoo.com with any questions 

you might have and I will possibly address them in the next 

article. 

■ 

 

 

Music can be the difference between a good game, and a great game.  This article will 

help you understand basic music theory and composition. 

David Perritte (MischiephX/Ds) 

mailto:mischiephX@yahoo.com


 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  99  

T
u

to
ria

ls 
  

Persistent vs. Global 

Tutorial 

Room Placement and Memory Preservation 
In most cases, this question is referring to a "door" object 

and the programmer is trying to get that object to appear 

right in front of a door in this new room he is transferring 

too; possibly a house or shop in the game, whichever.  The 

most common reply to this question will be "check the 

persistent box of the rooms you transfer between."  The ol' 

quick and easy... Yes, persistent is an option and serves its 

purpose, but it is a costly tool to use.   

For a small game, it really won't make a difference, but in a 

larger game with tons of rooms and objects, like an RPG, 

you will eat a lot of memory, your game will run slower, 

and you will lose some fan base because of that.  In my 

opinion, people need a hell of a catchy theme or 

consistent change and game play before boredom sets in 

and they're off to another game, so saving every frame per 

second and loading second you can is very crucial towards 

the end of a large project.  That's where global variables 

come into play.  Let's talk about persistent. 

By checking persistent within an object, that object will 

remember it's place (x and y) in whatever room you place 

it in; not good for room changing where doors are 

anywhere on the screen: top, bottom, middle, etc...  For 

changing rooms and character placement, most would 

check the persistent box option of the room, so the 

player's exact position is remembered where it was last at 

before the transfer of rooms takes place.   

By using that method, you are telling Game Maker to 

remember that exact rooms position at the time of room 

transfer on, regardless whether or not you will be going 

back into that room later on in your game.  Why should 

you need to?  Why make GM remember a room that is 

discarded?  This also results in the objects sprite_index 

showing the incorrect direction for entering the room.  

Little things like a "Hero Character" entering a castle and 

switching to a room where he is now nose first in the door 

he just came through looks bad; it's lazy work.   

Now I'm not saying that persistent is bad; sometimes like 

in puzzle games, it is needed dearly, but I simply 

recommend to all: if you can get around it, do so.  

Room Changing Object 
The most common method around persistent room 

placement is the "room changing object."  You draw a 

small sprite, you create an object that holds this sprite; 

this object is not visible, not solid, and placed directly in 

front of a "door" object or tile in which the player can press 

a key and initiate a "room change."  This method works, 

but will require a lot of different objects for all of the 

rooms you need to transfer around too; one to go to, and 

one to go back.   

The common answer to what I just stated is "well you 

could just check the room you're in and then move to the 

next room based off of that answer."  That does work, but 

at the same time, what if you had a room with 3 doors in 

it?  What if you were in an outside area like The Legend of 

Zelda and there were 10 or 15 different rooms you could 

transfer to?  You could no longer check the current room 

only, as there is however many possible rooms to transfer 

to.  The answer is checking where your character object is 

(x and y), in what room, and basing your transfer off of the 

answer you receive.  (EXAMPLE) If when my object 

initiates a room change, and I know he's currently in 

Here it is; the famous question: "If I transfer from one room to another, how do I get my 

object to show up in the correct position of the next room, or the current room if I 

transfer back?"   

Joshua Smith (jsmithlmsl) 



 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  1100  

T
u

to
ria

ls 
  

Persistent vs. Global Cont. 

Tutorial 

room_world, and his current y location is larger than 300 

but smaller than 350, and his current x location is larger 

than 450 but smaller than 500, than I know where he is in 

the room and I can use this pinpoint to send the player 

directly to the next room they should go to.  By checking 

the current room and narrowing down the players 

location, you can use 1 single object for every single room 

transition in a game, regardless of the games size, and you 

also do all of this without ever checking a persistent box in 

a room!  

Room transfers covered, that leaves us with properly 

spawning the player in the correct position with the 

correct sprite of newly entered rooms.  If I were to actually 

get into this with a full explanation here, I would eat up a 

lot more space than I'm sure MarkUp wants to give me, so 

I'll quickly cover the basics.   

I use global variables to represent every room; one per 

room actually.  Every time we change a room, I set the 

global variable for the room we're transferring to true in 

order to have a way of checking the current room, as well 

as the room we just came from.  From this result, I set the 

player objects x and y coordinates to directly where they 

should be (generally in front of another door object) and 

assign it the correct sprite, then I switch some variable 

values again in preparation for when the player exits this 

room, then I exit the code.  Here is a snip of my example 

showing a transfer from room2 to room 1: 

Transferring to the new room: 

if (obj_player.x<100) and room=room2 
 { 
 global.r2=false; 
 global.r1=true; 
 room_goto(room1); 
 exit; 
 } 

Placing the player in the correct place with the correct 

sprite of the new room: 

if global.r1=true and global.r2=false 
 { 
 obj_player.x=272; 

 obj_player.y=160; 
 obj_player.sprite_index=spr_left; 
 global.r2=true; 
 exit; 
 } 

 

Like said at the top of this column, the purpose here is to 

get around that persistent option and save yourself some 

memory, but even this example aside, you should always 

be looking and questioning everything you do and asking 

yourself all the while, “How can I make this better, faster, 

stronger, smaller, more efficient, more user friendly, 

better suited to my needs..." The list goes on and on.   

As a programmer, that is your and my responsibility.  The 

better and faster the route with less space used we find, 

the better for all of us it is in the long run.  We're just lucky 

to have a simplified (yet still brain shaking) program such 

as Game Maker to do so with.  On that note, I'll wrap this 

up and I hope you leave from reading this with a new idea 

and better confidence in what you do with your game.  

 I have written a fully commented example on how to use 

this method of room changing and persistent dodging.  

Within that example, there are 4 rooms, 1 of which has 3 

doors.  There is one single transfer object for the entire 

example, and I also demonstrate how to correctly position 

your player in the next room with the correct sprite facing 

the correct direction.  

You can visit my topic in the GMC, post your comments, 

and download my full RPG Character Placement Example 

at this link: 

http://gmc.yoyogames.com/index.php?showtopic=334149 

Thank you MarkUp for the opportunity to try and help 

others and I hope you all have enjoyed this and hopefully 

learned something new in the process. 

■ 

 

 

Joshua Smith (jsmithlmsl) 

http://gmc.yoyogames.com/index.php?showtopic=334149


 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  1111  

T
u

to
ria

ls 
  

Beginning Theoretic Artificial Intelligence 

Tutorial 

I’m writing this article, not to teach you the code behind 

quality AI, but rather the theory behind it, where or how 

one could apply it, the practical extent of its applications, 

and hence how to learn and even teach yourself what 

good gaming AI is. 

In video games and most programs, AI has the principle 

goal of using known information to make a decision, 

similar to that a human would make. Depending on the 

situation, AI may need to be excellent, such as in sports 

games, in other games, this is not necessarily the case. 

However, when the AI needs to be at its best we may need 

to look towards some basic psychology to capture the 

essence of a character and what truly creates them (this 

really helps to immerse a player in a game.) Before 

beginning a new project, one should always plan out the 

extent of the AI needed for each object (for example, a 

bird in the background of a platform game would not need 

to do/know much, in contrast, a leading villain would.) 

Nevertheless when AI reaches a certain point, it can just 

make a game plain boring, make it just like normal life. 

After all, many people play games as a form of escapism, 

making them too realistic would take from the experience. 

This brings me onto my next point about what Mark 

Overmars has aptly named “The Game Focus Diamond”: 

This measures what a game is going to be like (for 

example, Tetris is mainly in the ‘Play’ section), but I 

propose a new version, on the focuses of how the game 

would actually be made, not saying a game couldn’t have 

all of these aspects, but it helps to know what the main 

concentrations are on, especially when time and/or capital 

are limited: 

 

Each one is as important as the last; each one helps to 

create a great game, but very few games can capture 

them all. Getting back on track, this figure should help you 

to create balanced and ‘well-polished’ games, once you try 

to stay out of the blue/purple zones (the edges) in where 

your game is, but not in the very centre either. (For 

example, some games are driven by their originality, but 

not completely they also owe their success to enticing 

gameplay.) Play around with the chart and positions on it, 

until you find a good balance for you and your game 

(keeping your skills and capabilities in mind.) 

It is clear that AI is not the only important part in any 

game, but it is, even if only in small quantities needed. As 

such, it needs to be done right, for the type of game you’re 

making. In small, say puzzle based games, AI isn’t big, but 

Darragh Tobin (Shadow Master) 

One may say that Artificial Intelligence is the study and practice of intelligent behaviour, in 

animals, and the attempt to engineer this intelligence into machines, robots and programs. 

This said, beginners are allowed the presumption that Artificial Intelligence is reserved for 

Computer Scientists or Programming Gurus, but this is not always the case.  



 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  1122  

T
u

to
ria

ls 
  

Beginning Theoretic Artificial Intelligence Cont. 

 
Tutorial 

when it does come in, get it right. Think of the following: 

 What stage is the player at, as in what level of 
experience they’re at, where are they on the 
learning curve? 

 What is the difficulty of said ‘AI needing object’ 
going to be? How much thinking do they need to 
do? 

  How realistic does the AI need to be? 
That last one is interesting, sure enough, most of the time 

AI in basic games will be kept to a minimum, and 

consequently doesn’t need to be too realistic when it is in 

use, but if you’re going for top range human AI, in a war 

game, as I have said already keep psychology in mind.  

Psychology is a very broad topic; you could be qualified in 

it, but still have so much to learn, in general, it is the 

scientific study of mental process and behaviour. Only the 

basics would be used in AI, (very few games would dare to 

try out the unexplored realms of intelligence).  

We all know these basics, it’s just a matter of how we 

would put them into context, and capture them in our 

games, we’ll look at them socially, through Intrapersonal 

(existing or occurring within the individual self or mind, 

although not always consciously) and Interpersonal 

phenomena to try and capture what is needed for 

believable (therefore higher-quality) characters. These 

phenomena include: 

 Attitudes: They must be  created through and 
even developed throughout the story. Depending 
on the type of person, their attitude would differ 
(for example, a witty character (the games comic 
relief) would usually have a good attitude) 
depending on their situation, ones attitude to 
something or someone could change drastically. In 
serious games, this is important. 

 Social Influence: This is the way that people affect 
others around them, this would be difficult to 
implement with code, but instead of that, 
implement it in the story or script. 

 Interpersonal Perception: Simply put, this 
examines the beliefs that interacting people have 
about each other, such as their feelings, 
agreements, similarities, et cetera, et cetera. 

 Social Cognition: This is growing more popular, 

and although it is an interesting study, it can be 

complex. It covers how people perceive, think 

about, and remember information about others. 

There are more that we could add, but in my opinion they 

are the most important. They cover the social side of 

things, but in many games, that isn’t too important. So 

now we’re going to take a look at environmental 

psychology, to cover the, well, environmental side of 

things. This is an important topic, but it can get to be a 

very tricky. It boils down to how we react to our 

surroundings. But of course we all react differently, and 

that is where the problem arises. To find out how 

somebody would react, we need to look at his or her social 

psychological situation. What is their attitude, social 

cognition, et cetera? Because there are so many different 

types, it is best to map this one out for yourself. You would 

need to map out what the objects current environment is, 

and how to do that? I don’t want to delve into code, but 

there are ways (point_distance(x1,y1,x2,y2), 

distance_to_object(obj), distance_to_point(x,y) 

position_empty(x,y)) so the situation is mapped out, but 

how to decide what to do or how to react? The answer is 

to remember the characters personality and attitude. That 

means that you won’t be copying and pasting much code 

for main characters (assuming they’re different) but that is 

a good sign. It means that you have reached a state, where 

your game is not all the same, which gives the player more 

variety and more to play for. Look at a soap opera, for 

example, wouldn’t it be boring and unrealistic if just 

followed the events of one person? 

So this brings my article to a close, the end for my 

teaching you, (for now anyway) but far from the end for 

you. If you want to learn more, start trying out new games, 

make them simple, but try to do them all in code. Then 

you can grow more advanced with each new project. For 

further reading, or if you’re stuck, go to the GM help 

document, or look through the built-in functions/variables, 

and make sure to check out Wikipedia for more 

psychology information. I hope I’ve encouraged you to 

make something great now, so good luck, and happy 

coding! 

Darragh Tobin (Shadow Master) 

 

■ 

 



 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  1133  

T
u

to
ria

ls 
  

Although a finished game or program doesn’t need the source code anymore, that 

source code is quite important. Suppose you want to make changes to the source code 

later on. Depending on the way you wrote that source code, it can be easy to make 

changes to it, but you can also have a lot of work. This article will explain a few reasons 

why it’s best to keep your source code neat and some ways to actually achieve this. 

Efficient Source Code 

Tutorial 

Maintainability 
This is definitely an important reason to keep your source 

code neat. Suppose you need to draw 3 rectangles with a 

size of 320x160 px. You can do this by placing this piece 

of code in the draw event of some object:  

draw_rectangle(x,y,x+320,y+160,0); 
draw_rectangle(x,y+164,x+320,y+324,0); 
draw_rectangle(x,y+328,x+320,y+488,0); 

 

Suddenly you think that a window size of 160x120 px 

would be better. You now need to change all numbers in 

the piece of code. In this example, it wouldn’t be too hard 

to do that, but for larger pieces of code, it takes a lot of 

time to change all the numbers. This also means that you’ll 

have to do all the calculations again. And looking at the 

apparently random numbers, you wouldn’t expect this 

code to draw 3 rectangles of the same size. This way of 

coding is called hard coding. The good way to do this is to 

set a variable (or a named constant) for each property, 

then replace the constant values in the piece of code with 

the necessary variables (or a combination of them). In this 

case, we need three variables: width, height and distance. 

distance is the distance between two rectangles. The piece 

of code now looks like this:  

draw_rectangle(x,y,x+width,y+height,0); 
draw_rectangle(x,y+height+distance,x+width, 
y+2*height+distance,0); 
draw_rectangle(x,y+2*height+2*distance,x+width, 
y+3*height+2*distance,0); 

 

In the create event we define the required variables:  

width = 320; 
height = 160; 
distance = 4; 

 

Now the only place where you need to change the width, 

height and distance between rectangles is the create 

event. Also, you can now clearly see in the draw event 

where exactly the rectangles are drawn. The first one is 

drawn at the object’s x position and has a width 

determined by the variable width. The same for y. The 

next rectangle’s y position is distance farther than 

y+height, which is the y position of the end of the first 

rectangle. It gets quite complicated for the third rectangle, 

so it’d be better to put the code in a loop:  

var i; 
for(i=0;i<no_rectangles;i+=1) 
draw_rectangle(x,y+i*distance+i*height,x+width, 
y+i*distance+(i+1)*height,0); 

 

To further demonstrate the use of variables, the number 

of rectangles to be drawn is determined by a variable 

no_rectangles. 

This example should make clear that it’s best to always use 

variables or named constants where possible. Then it’ll be 

much easier to change the code later on. Also, all 

calculations are now done when the game or program is 

running; you can simply see them in the source code. That 

way, you have a nice overview. 

Bart Teunis 



 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  1144  

T
u

to
ria

ls 
  

Efficient Source Code Cont. 

Tutorial 

 

Readability 
The following example will clearly demonstrate why it’s 

important to keep your code readable (note: the 

dir_get_content script gets all files in a directory and puts 

the filenames in a list):  

var tmpdir; 

tmpdir=get_directory_alt("Open a directory: 

","") 

if tmpdir!="" 

files=dir_get_content(tmpdir); 

sf_files=surface_create(316,320); 

surface_set_target(sf_files); 

draw_clear_alpha(c_white,1); 

var n; 

for(n=0;n<ds_list_size(files);n+=1) 

draw_text(2,2+n*15,ds_list_find_value(files,

n)) 

surface_reset_target(); 

 

This piece of code is anything but neat. Time to make 

some improvements. 

There are two ways to make this piece of code look a bit 

neater. First of all, you can indent some lines of code. This 

is very useful for large blocks of code starting with { and 

ending with }. In the example above, the lines after the if 

statement and the for loop can be indented to make the 

code neater. GM has a nice option to make code indention 

easier: smart tabs. This option can be enabled in File  

Preferences  Scripts and Code. When this option is 

turned on, text on a new line will start at the same position 

as the text on the previous line (or on a logical position, 

again based on the text on the previous line). 

Another thing you can do is add comments. You can add 

comments anywhere in a piece of code. The most logical 

places to put them are above a block of code or to the 

right of a line of code. You could also add comments in the 

middle of a line of code:  

draw_text(5,5,/*draw some text, ...*/"text"); 

 

But it doesn’t really improve readability, does it? 

You can also separate blocks of code by an empty line. It 

also improves readability a lot. 

And last of all, it’d be best to keep to the correct syntax. In 

GM, you can do a lot without having syntax errors e.g. 

leave out semicolons, not place brackets around if 

conditions, use = instead of == for comparison, ... But it’s 

still better to keep to the correct syntax. An example: 

which one is the easiest to read? : 

if tmpdir!="" 

 
if (tmpdir!="") 

 

The brackets improve the readability, don’t they? This is 

also useful with operator precedence. Although a 

calculation might be correct without brackets, it might not 

be a bad idea to add brackets. In this case, brackets are 

not obligatory, but they can improve readability a lot. 

Now that we know all that, let’s have a look at the 

improved piece of code:  

//prompt for directory and get filenames 
var tmpdir; 
tmpdir=get_directory_alt("Open a directory: ",""); 
if (tmpdir!="") 
    files=dir_get_content(tmpdir); 
 
//create a surface to draw on 
sf_files=surface_create(316,320); 
 
//draw on the surface 
surface_set_target(sf_files); 
 
    draw_clear_alpha(c_white,1); 
     
    var n; 
    for(n=0;n<ds_list_size(files);n+=1) 
        draw_text(2,2+n*15,ds_list_find_value(files,n)); 
     
surface_reset_target(); 

 

As you can see, some comments have been added before 

each block of code, the code is syntactically correct and 

the text after the if statement and for loop has been 

Bart Teunis 



 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  1155  

T
u

to
ria

ls 
  

Efficient Source Code Cont. 

Tutorial 

indented. Also, some empty lines have been inserted to 

group lines of code dealing with the same action (which is 

described in the comment above each block). 

Naming conflicts 
Common causes of errors are naming conflicts. Suppose 

you have a character object and a sprite for the character. 

Since a sprite and an object are two different resources, 

you might think it’d be possible to give them the same 

name. So you add a sprite called character and an object, 

also called character. There is one case where this 

wouldn’t cause a problem, which is when the id of the 

sprite and object happen to be equal. But most likely that’s 

not going to be the case so character, which is actually a 

constant, can be either one of the two values. That means 

that if you’re going to draw the sprite, it might not be the 

sprite you were expecting. If you’re referring to the object, 

you might be referring to another object. Game Maker has 

a feature to check for conflicting resource names: Scripts 

 Check Resource Names. It’s an easy way to find 

resource naming conflicts. 

Not only resources, but also variables can be the cause of 

naming conflicts. An example: a script is run several times 

in a for loop. The loop and the script look like this:  

Loop 

for(i=0;i<25;i+=1) 
{ 
    scr_iterate(); 
} 
 

Script 

 
//this script repeats a certain action 27 times 
 
for(i=0;i<27;i+=1) 
{ 
    test = 0; 
} 

 

How many times do you think the loop (not the loop in the 

script) will be executed? If you think 25 times, you’re 

wrong. The loop is executed only once. The reason is that 

the variable i is the same variable in both cases. Both i’s do 

not only have the same name, but it’s just one single 

variable (in memory). That means that both loops change 

the same variable. After the script has been executed, i is 

27. That same i is now no longer smaller than 25, so the 

loop ends. It’s an annoying problem and it can be hard to 

find. That’s why you should always use var to declare 

these variables local to the piece of code. In the example, 

it’s sufficient to add “var i;” before the loop. The two 

variables i are now two different variables (in memory), 

while they have the same name. 

The best thing to do is to use local variables wherever you 

can. That’s the easiest way to avoid naming conflicts with 

variables. And you should use as few global variables as 

possible. 

A proper definition of everything 
It is very important to name everything correctly if you 

want to keep an overview over your code. Something 

important you need to do here is the following: Never, and 

I repeat, never, turn on “Treat uninitialized variables as 

value 0” in the global game settings. Why not? Well, you’re 

not defining everything properly then. And it might cause 

errors, too. 

An important thing are resource prefixes e.g. instead of 

naming an object character, you’d better call it 

obj_character or objCharacter or even ObjCharacter. This 

has a few advantages:  

 When looking at a piece of code, you immediately 
see whether a variable is just a normal variable or a 
resource id. 

 The problem of resource naming conflicts is 
solved. 

Bart Teunis 



 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  1166  

T
u

to
ria

ls 
  

Efficient Source Code Cont. 

Tutorial 

A resource prefix usually consists of 3 letters; in the 

example above the prefix is obj. Some other object 

prefixes that can be used: spr, bck, fnt, rom, lst, map, sys, 

sf … 

I also added a few prefixes for some other types of 

resources (the ones that aren’t shown in the resource 

tree). It’s a good thing to also add a prefix to those 

resource names. 

Another thing to keep in mind: when naming a resource, 

make sure the name explains the function of the resource, 

rather than it’s content. You could e.g. have a font called 

fnt_arial. This font is used as the font for the text in a 

custom messagebox. But its name implies something else. 

It is rather probable that the font Arial is required for other 

text, e.g. a text header. But the font for this header will 

probably be larger. You could call this font fnt_arial_large. 

Imagine you need to do this for several fonts. There is a 

better solution. A good name for the messagebox font 

would be fnt_msgbox. Now you know immediately that 

this font is used for the text in a messagebox. The name 

for the header font would be fnt_header. 

If you want to define everything properly, it might not be a 

bad idea to add a short header to scripts. This header 

contains some information on the script: explanation, 

arguments, return value, remarks... 

Modularity is another interesting thing. It means that 

certain parts of a game can work independently. Examples 

would be a physics engine and a resource management 

engine. Both have nothing to do with each other and thus 

can work separately. Later on, if you need to make 

changes to one of the engines, you can edit it without 

having to be afraid that anything will go wrong in the rest 

of the game. 

Be consistent when programming 
There is not always a single correct solution to a coding 

problem and everyone writes code differently. The most 

important is that you should be consistent when 

programming e.g. always use the var keyword, always use 

the same naming convention (capital letters, 

underscore...), always use the same header for scripts, 

always use && (or and)... 

That way, it will be easy to interpret your code later on. 

Conclusion 
This article has explained how to write and maintain 

efficient source code. There are a few reasons to write 

efficient source code: maintainability, readability, avoids 

naming conflicts. Also, you have to define everything 

properly and you should be consequent when 

programming. It’ll definitely make things easier for you as 

a programmer. 

Bart Teunis 

■ 

 

http://markup.gmking.org/contribute


 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  1177  

T
u

to
ria

ls 
  

I developed the AI Command Stack when I started to hits a few limits in what I could do 

in a step event. I was getting lost in a code block 1000 lines long which would make my 

AI patrol or attack or find a base for repair or hunt for health packs. It all sounds simple 

but when the code gets to be too big, it becomes unmanageable and slow. 

AI Command Stack 

Advanced Tutorial 

Also, the ability to make my AI change its mind and 

resume what it was doing… That added a level of 

complexity that became extremely difficult to manage. 

And I was limited to only one level of “resume prior task”. I 

won’t bore you with the details of the implementation of 

the original troublesome AI code. 

I needed a system where I could tell my AI to patrol an 

area; if, while patrolling, it would see an enemy, it would 

attack it; if, during the attack, it would need to repair, hunt 

down repair packs while defending itself; then resume the 

attack; then resume the patrol… 

Add on top of this, AIs that actually defend and escort 

another AI (or player) and your code becomes too 

complicated… Or the number of object types increases to 

the point you are confused as to what type of object you 

should use.  

In my case, in The Tank Game (yoyogames.com/games/show/6777), 

we ended up having so many tank types which none would 

do the job well enough for multiple roles. 

I needed a system where I could change the behaviour of 

the AI on the fly with no consequences to what it was 

doing before. Turn a patrolling tank into an escorting 

tank… Even upload a mission in the tank, like stop 

patrolling, go over an area and destroy the enemy base 

there, then escort the POW back to your base… 

I needed to make the amount of code executed smaller to 

bypass GML’s slow interpretation. The huge amount of 

code in the tanks would limit the number of AIs to a 

maximum of about 12-20 tanks. The problem caused not 

by the amount of code that made the tanks run, but by the 

amount of code that was skipped over using the “if” 

statement. That alone caused the biggest strain on the 

CPU. 

It hit me that I could code the patrol behaviour in a script 

and the escort behaviour in another script and that I could 

switch between the two scripts in my step event. Even 

write my player control code in a script so I could actually 

switch to that script to control any tank. 

Then it hit me that I could write little scripts instead of a 

huge control script/state machine and that I could string 

the scripts into a series of commands using ds_list and 

ds_stack.  Resulting in a very powerful system. 

How it works 
Let’s take a look at how it works. Starting from a simple 

movement script, removing the stack system from the 

example to ease the understanding of the concept, you 

can make a simple patrol system this way: 

Scripts 

Script MoveToXY: 

//MoveToXY(xto,yto,movespeed) 

//returns 1 when task is complete, 0 when 

not 

var xto; xto = argument0; 

var yto; yto = argument1; 

var movespeed; movespeed= argument2; 

//Move To XY at speed, or at distance left 

so not to overshoot 

move_towards_point( xto, yto, min(movespeed, 

point_distance( x, y, xto, yto))); 

if(x = xto and y = yto) 

    return 1; //done 

return 0; //not done 

 

icuurd12b42 

http://www.yoyogames.com/games/show/6777


 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  1188  

T
u

to
ria

ls 
  

AI Command Stack Cont. 

Cont. 

Advanced Tutorial 

Objects 

In your AI create event you have: 

m_curpoint = 0; 

 

In your AI step code you have: 

if(m_curpoint == 0) 

m_curpoint+=MoveToXY(10,10,5); 

else if(m_curpoint == 1) 

m_curpoint+=MoveToXY(10,100,5); 

else if(m_curpoint == 2) 

m_curpoint+=MoveToXY(100,100,5); 

else if(m_curpoint == 3) 

m_curpoint+=MoveToXY(100,10,5); 

else if(m_curpoint == 4) m_curpoint=0; 

 

This makes the AI do a square patrol. m_curpoint 

increases each time the move is done.  But you see, all 

these “if” will eventually task GM’s interpreter the more 

you add to the system. Especially when they are a lot of 

them (10-50). 

Now, let’s add in an imaginary list system that allows 

storing the script and it’s parameters in it. 

Assuming 

 list_create creates a command list 

 list_add_command adds a command script with 

its parameters to it 

 list_execute_command executes the script at 

position specified, returning the value the script 

returns (1 when done, 0 when not) 

 list_num_commands returns the number of 

commands in the list 

Objects 

In your AI create event you have: 

m_curcommand = 0; 

m_list = list_create(); 

list_add_command(m_list, MoveToXY,10,10,5); 

list_add_command(m_list, MoveToXY,10,100,5); 

list_add_command(m_list, 

MoveToXY,100,100,5); 

list_add_command(m_list, MoveToXY,100,10,5); 

 

In your AI step code you have: 

m_curcommand += list_execute_command(m_list, 

m_curcommand); 

if(m_curcommand >= 

list_num_commands(m_list)) m_curcommand=0; 

 

This makes the AI do a square patrol. m_curcommand 

increases each time the command is done, using our 

imaginary system. 

OK, I see, but where does it attack? 

The second part of the Command Stack is the stack 

system (Where the name originally comes from). The 

stack is like the list but commands in the stack are 

executed in a last in - first out manner. And commands in 

the stack are executed first, before commands in the list… 

Commands in the list are not executed if there are 

commands in the stack. 

The Command Stack system actually removes the current 

list command from the list and pushes it in the stack which 

is more efficient but for the explanation here, I will keep it 

simple to avoid confusion. 

Let’s add another script: 

Scripts 

Script PatrolToXY: 

//Script PatrolToXY 

//PatrolToXY(xto,yto,movespeed,enemyobject, 

// range) 

//returns 1 when task is complete, 0 when  

//not pushes AttackEnemy to the stack if  

//enemy found 

//var xto; xto = argument0; 

//var yto; yto = argument1; 

//var movespeed; movespeed= argument2; 

var enemyobject; enemyobject= argument3; 
var range; range= argument4; 
//get closest enemy 
var enemyid; enemyid = 
instance_nearest(x,y,enemyobject); 
if(enemyid) 
{ 

icuurd12b42 

 



 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  1199  

T
u

to
ria

ls 
  

 

 

 

 

 

 

 

MarkUp Advertising          http://gmc.yoyogames.com/index.php?showtopic=346888 

AI Command Stack Cont. 

Cont. 

Advanced Tutorial 

    //is it in range 
    if(point_distance(x,y,enemyid.x,enemyid.y)<range) 
    { 
        //push the attack on the stack 
        stack_push_command(m_stack,  
AttackEnemy(enemyid,range,argument2)); 
        //not done; 
        return 0; 
    } 
} 
//move towards patrol point; 
return MoveToXY(argument0,argument1,argument2); 

And another script: 

Script AttackEnemy: 

 
//Script AttackEnemy 

//AttackEnemy(enemyid,range,speed) 

//returns 1 when task is complete, 0 when 

not 

var enemyid; enemyid= argument0; 

var range; range= argument1; 

var movespeed; movespeed= argument2; 

//is enemy still alive 

if(instance_exists(enemyid)) 

{ 

    //is it in range 
    if(point_distance(x,y,enemyid.x,enemyid.y)<range) 
    { 
        //move to it 
        
move_towards_point(enemyid.x,enemyid.y,movespeed); 

        //kill it if we touch it… simple 
        if(place_meeting(x,y,enemyid)) 
        { 
            with(enemyid) {instance_destroy();} 
            //done; 
            return 1; 
        } 
        //not done; 
        return 0; 
    } 
} 
//done; 
return 1; 

Assuming 

 stack_create creates a command stack 

 stack_push_command pushes a command script 

in the stack (top of stack) with its arguments 

 stack_execute_command executes the script at 

the top of the stack, returning the value the script 

returns (1 when done, 0 when not) 

 stack_is_empty returns if the stack is empty 

 statck_pop removes the top script from the stack 

icuurd12b42 

 



 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  2200  

T
u

to
ria

ls 
  

AI Command Stack Cont. 

Cont. 

Advanced Tutorial 

Objects 

In your AI create event you have: 

m_curcommand = 0; 

m_list = list_create(); 

list_add_command(m_list, PatrolToXY,10,10,5, 

EnemyObj, 200); 

list_add_command(m_list, 

PatrolToXY,10,100,5, EnemyObj, 200); 

list_add_command(m_list, 

PatrolToXY,100,100,5, EnemyObj, 200); 

list_add_command(m_list, 

PatrolToXY,100,10,5, EnemyObj, 200); 

 
m_stack = stack_create(); 

 

In your AI step code you have: 

 
if(stack_is_empty(m_stack)) 

{ 

    m_curcommand +=  

list_execute_command(m_list, m_curcommand); 

    if(m_curcommand >=  

list_num_commands(m_list)) m_curcommand=0; 

} 

else 

{ 

    if(stack_execute_command(m_stack)) 

stack_pop(m_stack); 

} 

 

 

This makes the AI do a square patrol. m_curcommand 

increases each time the command is done, using our 

imaginary system. If the patrol script detects an enemy of 

type or parent type EnemyObj within range, the attack 

script is pushed in the stack (that code is in the PatrolToYX 

if you missed it). The attack ends if the enemy is destroyed 

or moves out of range and the patrol resumes. 

Conclusion 
That is how the Command Stack fundamentally works. 

You have your basic behavior defined in your create and 

step events and the behavior changes according to the 

circumstances by the way you implement your scripts. 

And, at anytime, you can destroy the basic behaviour set 

and replace it with another by simply emptying the 

command list and stack and adding another set of 

commands. 

The actual system can be found here. 

http://gmc.yoyogames.com/index.php?showtopic=335600 

PatrolToXY 

10,100 
Pushes: AttackEnemy 

 

icuurd12b42 

 

■ 

 

 

 

 

 

 

 

 

MarkUp Advertising              http://markup.gmking.org/ 

http://gmc.yoyogames.com/index.php?showtopic=335600
http://markup.gmking.org/


 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  2211  

T
u

to
ria

ls 
  

Multiplayer games are huge these days. Many games you find use a split-screen system 

to allow two or more players to play on the same computer. Many beginner level GM 

users have some problems when making split screen games.  

Split Screen 

Tutorial 

The main issue is adding an overlay, to display a score, 

timer, etc. The problem that a lot of people seem to be 

having is that when you add an overlay, and one player 

enters the other’s view, the overlay is shown in the wrong 

view, and it looks absolutely horrible (Picture at right). I 

have two simple solutions to remedy this problem. 

 

If you are a beginner in GML and have little to no 

experience, here’s what you do. First, you want to make a 

wall object that the players can’t pass through. Line the 

right border of the room with this object. You might 

already have a wall object around your entire room, which 

is great. If your game lets the players warp across the 

room, this wall object can be invisible and on collision 

warp the player. Either way, the purpose of the wall object 

is to cordon off the right side of your room.  

Now that we have our wall, we want to extend the width 

of our room. However big your overlay is, you want to add 

100px buffer to the width of your overlay, then add that 

amount to the width of your room.  

This creates a 100px buffer zone between the edge of the 

playing field and the edge of where your overlay will be. 

Now you want your overlay object to draw the overlay at 

the right edge of your room. If you have multiple overlays, 

put one on top of the other (picture below of what the 

room should look like). 

 

Ok, now we need to add some extra views, one for each 

overlay. We position those views over the overlay objects, 

and set the port on screen to where ever the overlays 

would show up in the game. So if our overlay would be 

placed at the top left corner of the view, which is where we 

would place the view of the overlays. I completed these 

improvements, and placed a picture below of what the 

game would look like. One last thing, if when your player 

moves all the way to the right of the screen and you can 

see the overlay a bit, increase the 100px buffer until you 

can’t see the overlay anymore. 

 

Zach Hext 



 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  2222  

T
u

to
ria

ls 
  

Split Screen Cont. 

Tutorial 

Another solution to this problem requires a bit of GML 

coding under your belt. This will accomplish the same task 

with a little less work, but it’s a little more complicated. I 

recently found, in the help file, a snippet of code that 

allows you to turn off the overlay if it is in the wrong view. 

The statement view_current allows you to check what 

the current view is. So, if the current view is the wrong 

one, we simply don’t display the overlay. Here’s a little 

what the code would look like: 

{ 

//player 1's view is view[0] 

  if (view_current == 0) { 

  //this would be the draw functions for 

the overlay 

  draw_rectangle(view_xview[0], 

view_yview[0], view_xview[0]+100,  

view_yview[0]+20, false) 

  } 

} 

 

It’s that simple. The code for player 2’s view would be the 

same, just change the 0 in the if statement to whatever 

player 2’s view is.  

Conclusion 
There you have it, two simple ways to add in overlay in 

your split-screen game. I hope this helps a bit to solve 

some of the problems people have had with split-screen 

games. 

 

Zach Hext 

■ 

 

GM Color Extension 

Q
u

ick
 R

e
vie

w
s 

One of the basic features of Game Maker 7’s Extension 

Mechanism was to allow the addition of constant 

variables directly into a game’s source file in a way that 

makes them seem native to the IDE. Indeed, one of the 

first hypothesized uses of this capability was the simple 

addition of new colors to Game Maker, and indeed again, 

one of the first useful extensions made for Game Maker 7 

is the Game Maker Color Extension. This adds more than 

260 colors to Game Maker, many of which are interesting 

colors. A very simple extension yet could be needed if 

you’re not too familiar with RGB and HSV colors. 

gmc.yoyogames.com/index.php?showtopic=343006 

  

Seven Minutes 

G
a

m
e

 S
p

o
tlig

h
t 

In the ‘Creative Game Ideas’ department, we have 

“Seven Minutes” by ‘Virtanen’, a puzzle platform game 

that lasts for exactly seven minutes: your last seven 

minutes of life. The game starts after touching what 

appears to be an important object that reveals to you the 

end of the world, and is then given seven minutes of life 

to find out. Extremely challenging, extremely intense, 

and – at times – very philosophical, try it out! 

www.yoyogames.com/games/show/26339 

http://gmc.yoyogames.com/index.php?showtopic=343006
http://www.yoyogames.com/games/show/26339


 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  2233  

R
e

vie
w

s 
  

Elemence Aux 

Review 

What they say 
“It's a good game I like it. Worth download [sic].” 

 

Description 
Elemence Aux is a puzzle platformer, where you control an 

element. The idea is to simply go past them, while facing 

dangerous jumps and other sections, where death is very 

close. The player can collect points, which can be used to 

create blocks underneath the player, to go through 

otherwise impossible sections of the map. The level design 

is a bit repetitive, however. 

Elemence Aux is an addicting minigame. The sound & 

graphics aspects of the game are, however, quite poorly 

done. The music consists of MIDI songs, and the game 

features little sound effects. The graphics are very simple 

(although the game features small particle effects). 

The game has a small backstory; “Four scientists were on a 

quest to turn gold into the most expensive element 

discovered so far – Californium. Unfortunately, the electrons 

misfired, warping the gold into six mind-of-their-own gold 

derivatives.” 

The game is a fun play, and has been designed well. The 

technical execution suffers of some minor problems (for 

example, the player got stuck at one point of playing). It 

also features many difficulty levels, and a multiplayer 

mode. In overall, it’s a game worth testing and playing. 

Pros and Cons 
Elemence Aux is worth a try, and a quick timekiller. 

Pros 

 Good idea 

 Addicting gameplay 

 Technically implemented well 

Cons 

 Poor sound effects and music 

 Poor graphics 

 Repetitive level design 

Conclusion 
While Elemence Aux suffers of some problems, it’s still a 

good game. 

“Take control of one of six elements in this strategic platformer. Use each one's unique power to 

help otherwise-uncrossable gaps and avoid danger. Simple graphics, five difficulties and a three-

level multiplayer race.” 

Veeti Paananen 

Ratings 
Graphics: 4/6 

Sound: 4/6 
Gameplay: 5/6 
Storyline: 4/6 

Design: 5/6 
 

Developer: NAL Games 
Game Maker: Version 6 

 
 

R
atin

g
s 



 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  2244  

H
o

t T
o

p
ics 

  

Instant Play 

Hot Topic 

It makes good commercial sense for YoYo Games to offer 

this feature.  Firstly, I am not aware of any other free 

gaming sites that offer anything similar to Instant Play.  

The announcement generated some publicity, being 

picked up on many Indie Gaming sites.   

The main reason for the addition of Instant Play is of 

course that it brings people back to the YoYo Games 

website, much more lucrative to YoYo than someone who 

plays games from a folder on their desktop.   

Thirdly, and this isn’t a point I fully agree with, Instant Play 

makes it easier for gamers to play Game Maker games.  

Certainly the need to choose a location to save the game, 

and then extract the folder is removed – but I don’t think 

this is a serious problem.  Finally bandwidth is saved, for 

both YoYo and gamers, as you only need to download the 

GameMaker runner the first time you Instant Play a game 

made with a particular version of GameMaker. 

Instant Play is currently compatible with IE 6+ and FF 2.0+ 

and requires Windows 2000 or a later version.  If you 

haven’t yet used instant play you can install the ActiveX 

control or FireFox plugin when you next go to play a game 

hosted on YoYoGames.com 

Making your game Instant Play compatible: 
 Either upload the executable of your game directly 

or use a zip file containing the executable and 

other files your game need. The other files can be 

in a subdirectory if you want but make sure the 

game executable is in the main directory. Don’t 

use another compressor than zip. 

 Don’t use an installer for your game. 

 If you want to upload an editable version of your 
game, also include the executable in the zip file. 

 Make sure there is only one executable in the main 
directory of the zip file. If you need additional 
executables (such as a level editor), make sure 
they are in a subfolder. 

 Use Game Maker 7 or 6 for your game. 
 

Source: http://mark.glog.yoyogames.com/?p=13  

Instant Play FAQ 

What is downloaded when I Instant Play a game? 

The original .exe file is separated from its GameMaker 

runner and is given an extension which relates to the 

version of GameMaker in which it was created.  For 

example .g70 games were made with GameMaker 7 and 

.g61 games were compiled in GameMaker 6.1. 

What about saved files, DLLs and external sounds, will 

those work? 

External resources such as DLLs and data files are also 

downloaded and work as they would with the normal .exe 

file.  Save files are stored on your hard disk. 

Do uncompiled GameMaker files (.gmd, .gm6, .gmk) 

work with Instant Play? 

No.  Only GameMaker 6, 6.1 or 7 executables work with 

Instant Play. 

 

Since YoYo Games added the “Instant Play” feature to their website in September 2007 gamers have 

been able to play Game Maker created games without the need to download and extract game files. 

Until the end of January YoYo Games was the only site offering this feature.  Users of a 

compatible browser that have installed the YoYo Player plugin can take advantage of the ability 

to automatically download game files to a location on their computer which are then executed. 

Phillip Gamble 

http://mark.glog.yoyogames.com/?p=13


 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  2255  

H
o

t T
o

p
ics 

  

 

 

 

 

 

 

 

MarkUp Advertising             http://www.yoyogames.com/games/launch/15130 

Instant Play 

Hot Topic 

Where are the Instant Play files stored on my computer?  

Instant Play files are stored under a subfolder of the Game 

ID in a folder called “YoYoGames” in My Documents. 

What about the Instant Play runner? 

Each version of GameMaker requires a different runner.   

The runners are automatically downloaded from YoYo 

Games when you try to instant play a game created with a 

particular version of GameMaker.  They are installed under 

DEFAULT\Documents and Settings\All Users\Application 

Data\YoYoGames. 

Do the files delete themselves after I have finished 

playing? 

No, after you have finished playing the files remain on 

your computer.   

Can I use Instant Play when I am not connected to the 

Internet? 

No, you need to be online to run Instant Play programs. 

Why isn’t my game working with Instant Play? 

First check that your game is compatible (see previous 

page).  It takes a while for the files to be prepared for 

Instant Play. 

 

 

Why is there a delay between my game being uploaded 

and my game working with Instant Play? 

Uploaded files are scanned for viruses before being made 

Instant Play compatible.  Games also need to be split from 

the GameMaker runner which is included in all 

GameMaker created executable files. 

Compiled from the GMC and information provided on 

www.YoYoGames.com  

 

 

Phillip Gamble 

http://www.yoyogames.com/games/launch/15130
http://www.yoyogames.com/


 

AApprriill  22000088  MMaarrkkUUpp  MMaaggaazziinnee  2266  

 

Goodbye! 

MarkUp is an open publication made possible by the contributions of people like you; please visit markup.gmking.org for information on how 

to contribute.  Thank you for your support! 

©2007 Markup, a GMking.org project, and its contributors.  This work is licensed under the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. To view a 

copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, 

California, 94105, USA.  Additionally, permission to use figures, tables and brief excerpts from this work in scientific and educational works is hereby granted, provided the source is 

acknowledged.  As well, any use of the material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. 

Copyright Law (17 USC, as revised by P.L. 94-553) does not require the author’s permission. 

The names, trademarks, service marks, and logos appearing in this magazine are property of their respective owners, and are not to be used in any advertising or publicity, or 

otherwise to indicate sponsorship of or affiliation with any product or service. While the information contained in this magazine has been compiled from sources believed to be 

reliable, GMking.org makes no guarantee as to, and assumes no responsibility for, the correctness, sufficiency, or completeness of such information or recommendations. 

GMking.org is the parent network for MarkUp Magazine. It is constructed as to behave like a 

centralized portal that links to the four main aspects of GMking.org’s projects: The 

GMking.org Site [which is now a sub-site of the main gmking.org page], The GMking.org 

forums, GMpedia.org, and MarkUp magazines. Visit the site for MarkUp’s entire set of sister 

projects! 

One of MarkUp’s sister-projects, also developed and maintained by GMking.org, 

is GMpedia.org. To learn more information about your Game Platform of 

choice, you could check out GMPedia.org. GMPedia is a game development wiki 

with a growing community-base and content. GMPedia is not limited to Game 

Maker, but expands to include all forms of game development, including Flash, 

etc. 

GMPedia.org has also been tied deeply with MarkUp Magazine. For more 

information and detail on certain topics discussed in MarkUp Magazine, visit 

GMpedia.org! 

And that was Issue 13 of MarkUp Magazine! We truly hope you’ve enjoyed reading this little issue. 

MarkUp Magazine is supported by contributors! If you are a reader of MarkUp Magazine, then you can help us 

become better by sharing your experience with us and the readers!  With feedback, you can help by either joining the 

MarkUp forum, or e-mailing the MarkUp staff. You can also help us by sending us your own content, to do so, please 

check out the contribution page on the MarkUp Magazine website! The contribution page also includes a list of 

advantages to becoming a contributor, including information on advertising space and free game development 

books. Remember, you don’t need to apply to become a staff member, you can just write for us! 

The MarkUp Staff■■ 

Be Sure to Check Out... 

http://markup.gmking.org/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://gmking.org/
http://gmpedia.org/
http://forums.gmking.org/index.php?showforum=5
mailto:staff@gmking.org
http://markup.gmking.org/contribute

