

August 2008 MarkUp Magazine 1

/ Exclusive Preview \

Sixty Five Million and One BC

 / The Making of \

 Falling Troy

/ 2D Array String Explosion \

 + Viscerality

+INTERVIEWS With

 Gareth Tilt

 2DCube

 and

 SuperCasey4

August 2008 MarkUp Magazine 2

W
e

lco
m

e
!

Eyas Sharaiha Sr. Editor
Robin Monks Editor
Alaric Holberton Contributor
Bart Teunis Writer
Erthgy Writer
Sam Whited Writer
Shadow Master Writer
Suhaib Al-Dari Graphics Design

■■

Table of Contents
Exclusive Previews
Sixty Five Million and One BC 4

Editorials
Going Commercial with 65M+1 BC (Interview) 10
Viscerality ... 11

Monthly Specials
Script of the Month 18
Extension of the Month................................ 20

Tutorials
Making Lists with Local Arrays 21
Expanding GM with .NET 25
2D Array String Explosion 31

The Making of…
The Making of Falling Troy............................ 33

Reviews
Lab 14 .. 42
Karoshi 2.0 ... 45
A Dragon’s Tale.. 49
Ancient Ants Adventure51
MarDar .. 53

Interviews
Interview with SuperCasey4 44
Interview with 2DCube................................. 47

C
o

n
trib

u
to

rs
T

ab
le

 o
f C

o
n

te
n

ts

Free Games in a Commercial World

Oh, sorry, I didn't notice you there! Let me close down

SimCity 4 (the last real SimCity! Don't get me started on

Societies). One of the thoughts on my mind lately is if

commercial games, just because you have to pay for them,

get more attention.

For example, if two YoYo Games staff pick games receive

the exact same rating, would one that costs money versus

one that is freeware receive more attention simply

because of the attached cost? Let's take Aces High Over

Verlor Island and Sixty Five Million And One BC as the

examples. Without thinking about anything else, would

you assume 65m+1 was the better game because it was a

commercial game?

It's food for thought. And now that there are more

opportunities for game maker to sell their games on sites

like pcgamesnow.net we'll probably be seeing a lot more

of these discussions pop up. Which also reminds me of

those 300 ‘Games for Windows’ CDs that used to be so

popular; let's all make mental note not to do that with

game maker games. OK? OK!

Now, I've got to get back to my city, the sims need me!

Until next time,

Robin Monks

http://www.yoyogames.com/games/show/105
http://www.yoyogames.com/games/show/105
http://www.yoyogames.com/games/show/105
http://www.yoyogames.com/games/show/34097
http://pcgamesnow.net/

August 2008 MarkUp Magazine 3

In
 th

e
 n

e
w

s…

YoYo Games Competition Updates

The results for the YoYo Games Ancient Civilization

competitions are out, with Ancient Ants Adventure in first

place by RedSystem, followed by RhysAndrews’s

Caveman Craig in second place, and KC LC’s Tut’s Test in

third place. The 1000$ Grand Prize winner has been

reviewed in this issue, and you will be able to see the

reviews for Caveman Craig and Tut’s Test in issue 15 of the

magazine.

In other news, the third YoYo Games competition theme

has been announced: co-operation. The contest is

currently open for submissions and the deadline for

submissions is August 24th, 2008. You can find more

information about the competition here.

C++ Runner and Other YoYo News…

What seemed like the opportunity to have an exciting

wave of news and updates from YoYo Games turned out

to be a false alarm. The C++ runner is apparently in the late

stages of development and “will definitely be ready this

June”; it’s August. The YYG Developers also ran into

problems with the Pascal platform used in developing the

Mac version, which will cause it to be delayed.

I don’t particularly have a problem with delays or missed

‘public testing’ dates really, and I don’t think most of the

community should. In terms of disappointments, YoYo

Games hasn’t exactly disappointed us, so we shouldn’t

really complain about missed dates for the sake of

complaining. Still, I hope YoYo’s strategy will change; to

favor silence over whatever they are still unsure of, just for

the sake of professionalism.

Panic: Instant Play Breaks on Firefox 3

Panic is no overstatement – YoYo Games’ Instant Play

feature was incompatible with the latest version of

Mozilla‘s Firefox web browser. YoYo Games promised a fix

to the incompatibility, but the fix has been delayed and

delayed, prompting members to come up with their own

solutions that involve disabling security features of Firefox

3 to do so, as well as engage in a heavy critique of YoYo

Games. An open letter to YoYo Games was written by Dr.

Watz0n of the GMC. Eventually though, YoYo Games did

release an update on June 15th that fixed the issue.

While I certainly believe YoYo Games did hurt themselves

with such delays to the Firefox 3 update, I still feel the

latest unfolding in this is just too much. What do you

think?

Third GMking.org ‘Audcast’ Released

The Third GMking.org Audcast, also known as the Game

Maker Podcast, has been released here. In the Audcast,

Robin and Eyas discuss various developments in the GMC.

Russell’s Quarterly and others…

Tom Russell’s game development magazine focusing

primarily on editorials on game design has released its

third issue. And a new competitor is Game Maker

Magazine, whose fourth issue you can check out here. Our

friends at GMTech have – like us – halted development

somewhere during June but should be ready to have their

thirteenth issue on their website soon.

■■■

http://www.yoyogames.com/games/show/34591
http://www.yoyogames.com/members/RedSystem
http://www.yoyogames.com/members/RhysAndrews
http://www.yoyogames.com/games/show/33621
http://www.yoyogames.com/members/KC%20LC
http://www.yoyogames.com/games/show/34828
http://www.yoyogames.com/gamemaker/competition03
http://glog.yoyogames.com/?p=80
http://gmc.yoyogames.com/index.php?showtopic=385319
http://gmc.yoyogames.com/index.php?showtopic=385319
http://gmc.yoyogames.com/index.php?showtopic=385319
http://connor.maskedmedia.com/posts/162
http://gmking.org/drupal/audio/
http://host-a.net/tomrussell/quarterly3.pdf
http://willhostforfood.com/?Action=download&fileid=26232
http://www.gamemakertech.info/

August 2008 MarkUp Magazine 4

E
x

clu
sive

 P
re

vie
w

 Back in November, I was certainly lucky to have laid an eye on the latest version of

Sixty Five Million and One BC. Today, I’m thrilled to show you an exclusive preview of

the full version of this game… only in MarkUp Magazine.

Overview

It is generally believed that the reason for the mass

extinction of Dinosaurs is the collision of a huge asteroid

with the earth, effectively ending the Mesozoic era. In

Sixty Five Million and One BC, you travel as a velociraptor

around various locations to try and activate and assemble

a dinosaur-designed machine that will hopefully save the

world. In general, the game is intelligently designed,

extremely addictive, unbelievably versatile, and never

stops being engaging and action-packed!

 View the Exclusive 65M+1 Screenshot Gallery, Here!

Starting with the Game

From the moment you double click the game, you are

greeted with the best-quality scenery, smooth effects,

genius music, and subtle sound effects to complement it

all.

When you open the game, you are still presented with the

‘animated’ menu that blew me away in the first preview.

Now, the menu options are all available and properly laid

out, and menu items can be selected using the mouse by

highlighting the options or via the keyboard’s arrow keys.

Both methods result in subtle click effects that appear

when an item is being highlighted or selected.

By Eyas Sharaiha

http://markup.gmking.org/issue/9
http://www.gmking.org/gallery/zenphoto/65m-1-gallery/
http://www.gmking.org/gallery/zenphoto/65m-1-gallery/

August 2008 MarkUp Magazine 5

E
x

clu
sive

 P
re

vie
w

The game’s preferences have a difficulty slider, which I

thought was an excellent addition, which makes the game

highly customizable. As well as options to remove the

music (no idea who would want to do that) or any of the

‘supplementary effects’ for those on lower-end machines;

which makes the game highly optimize-able, I like it!

The game starts rather interestingly with the game’s HUD

following another character, which you – the main player –

finally borrow from the character to begin your adventure

across the Mesozoic world. Such light hearted interaction

continues throughout the game and will be discussed

further later in the preview.

Game Features

HUD

The whole Heads-up display of the game (or the user

interface) is extremely smart, but most importantly helpful

and easy to use. The context-sensitive buttons we have

on the top in each window tells us the controls that we are

allowed to use at any instant in time, the buttons are

usually only the Control button and the Space bar, but

their functions and effects change according to what

you’re doing at the moment. If you’re jumping then ‘Ctrl’

makes you climb, if you’re standing still then it makes you

tail whip, and if you’re walking it makes you run. When a

button is pressed its graphic changes to indicate that by

highlighting it, and if releasing the button does anything,

then the button is properly labeled accordingly.

The health bar and health in general in the game are also

By Eyas Sharaiha

August 2008 MarkUp Magazine 6

E
x

clu
sive

 P
re

vie
w

well made. The health bar has this jagged outline that fits

the entire atmosphere of the game and correctly reflects

the era in which the game takes place. When it comes to

health in terms of quantity, I think it has been well

calculated to take into consideration the difficulty curve of

the game, well done. Also, the screen starts “glowing red”

when you are damaged past a certain point, which is cool.

Death also results in a quick yet smooth red ‘flash’ on the

screen. Overall, the health is properly reflected in the

game’s interface, both quantitatively with the aid of the

health bar and reflects the ‘mood’ that is usually

accompanied by the health and status through the

flashing in the interface, the colors, etc..

Next to the health bar, we have the star count, which is

the number of stars you have collected. Every 30 stars you

collect, you get revived!

Versatile Gameplay

The gameplay of the game is incredibly versatile to the

extent that versatility is no longer just a plus or even an

asset to the gameplay, but is virtually an indivisible feature

and part of the game, that makes it the great game that it

is.

At times we’re playing a simple platform on ground

fighting other monsters. But as you progress through the

story, even this simplicity evolves into something with

more purpose; collecting components to build a machine

and saving life.

At other times, we move to puzzle solving! Indeed,

without solving such puzzles one cannot progress in the

game, thus forming a crucial aspect of the game play. The

gameplay itself changes and shifts every once in a while; it

never stops being entertaining!

Other forms of gameplay including racing, frog collection,

and avoiding meteors! All these fit properly to the

storyline and form a continuous stream of versatile

gameplay, never ceasing to surprise and amaze the player.

Context-sensitive Buttons

Health Bar Star Count

By Eyas Sharaiha

August 2008 MarkUp Magazine 7

E
x

clu
sive

 P
re

vie
w

Intelligent Design!

The game has been designed rather intelligently, with

careful placement of objects, walls, monsters, and even

the order of the game and its events.

Whether it’s the choice of bosses to fight at any time, or

S c r e e n s h o t s

By Eyas Sharaiha

the way the bosses act, the game will never stop being

breathtaking, that’s for sure! Each boss needs to be dealt

with in different ways, sometimes you need to make them

dizzy by jumping around, and at other times needing to

reflect their shots, and… you’ll even have a chance to

make a group fight, where a team of green velociraptors

takes on the evil black ones! Whichever boss you’re

fighting, the game requires massive skill, but also

incredible strategy, and a game that requires both

swiftness and intelligence in order to complete it (often

both at the same time) deserves every penny, and more.

Other Assets

Music

The demo available on the YoYo Games website shows

you the amazing music of the game, but do not think it’s

just one or two beautiful tracks that repeat over and over

again – oh no! – as you progress through the levels, you’ll

see more and more, all fitting the mood and atmosphere

of the game at the time; whether its tense, exciting, light-

hearted, or just pure fighting. There are a total of 38 tracks

for the game, and not one of them is ‘just average’.

August 2008 MarkUp Magazine 8

E
x

clu
sive

 P
re

vie
w

Scenery

The game’s amazing scenery and graphics are spectacular

and well made. Whether it’s in cutscenes or the regular

gameplay (although the graphics do become generally

better in cutscenes) looking at the game screen can be a

very rewarding experience!

Throughout the game, playful jokes like the ones shown

are incorporated. These, as well as spoofs of popular

movies and TV shows can be spotted.

The above reference to ‘24’ isn’t alone, the game has

references and for movies like Deep Impact, Armageddon,

and others! The overall sense of humor ‘comforts’ the

player at times, and playing the game might sometimes

be just to see the jokes that have been thrown around the

game, here and there!

Graphical Effects

Other sorts of effects exist as well; whether it’s drinking,

water particles moving, light, fire, the sun, smoke; all of

these are well integrated into the game and compliment it

very well.

Humor

The sense of humor present in the game is also an asset to

the gameplay.

By Eyas Sharaiha

August 2008 MarkUp Magazine 9

E
x

clu
sive

 P
re

vie
w

Finishing the Game and Beyond

Inside the machine, it becomes your task to save the

world. What happens? I definitely won’t give that away, so

I tried to take screenshots that don’t give away the game’s

outcome. In general, the game becomes much more

intense (both inside the machine and after that), and

you’re faced with amazing surprises and a brilliant

outcome. You’ll have to buy the game to see it for

yourselves, but I’m telling you: you’ll like it!

When finishing the game, you’ll have a new button in the

menu that stands out: quick play.

I’m not sure how you’ll feel when you see it, but I was

thrilled; I love those cool goodies you get for finishing the

game! And this is definitely one of them.

Looking back at my previous preview…

In my Issue 9 preview, I was equally impressed with what I

had seen so far, and thank goodness this hasn’t changed.

Out of all that I had experience throughout the game

during that time, I only had two comments: making the

difficulty curve smoother, as well as cutting and

shortening the extra-long introduction cutscene. I feel

both of these have been addressed correctly.

The introductory cutscene was split into two parts, with a

HUD introduction first, then learning how to move, then

another cutscene to introduce you to the storyline of the

game. Well done! As for the difficulty curve, I either

became better or the game’s difficulty now increases in a

more graduate rate such that the player’s skill keeps up

(most of the time) with the game’s increasing difficulty.

The difficulty slider is also there to make things better, of

course. The game is still very difficult, but that is what

makes completing it such a rewarding experience!

Conclusion

The problem I face when writing reviews for games of such

quality is that I always run out of words! ‘Amazing’,

‘genius’, ‘spectacular’, ‘brilliant’, ‘intelligent’, ‘exciting’ are

words I’ve used so much already, and some might even be

ticked off at the redundancy already! Well what can I say?

Definitely one of the best games I’ve ever played, and so

far, it is for sure the best Game Maker game I’ve ever seen;

it’s perfect, complete, and playing it is an experience that

goes full circle. You’ll miss out on a lot if you don’t try the

demo, and I surely recommend purchasing the game.

Excellent.

Visit the Game Website at 65millionand1bc.com. There you’ll find all the

information you need to try a limited demo or purchase the full version.

■

By Eyas Sharaiha

http://www.65millionand1bc.com/
http://65millionand1bc.com

August 2008 MarkUp Magazine 10

C
o

m
m

e
rcial G

am
e

s

In their words

Sixty Five Million and One BC is a platform game for

Windows about a bunch of velociraptors trying to save the

world from a comet; everything past that is details!

From a ‘Commercial Game’ standpoint, the game is not

shareware, as the free downloadable demo is separate

from the full version; the demo cannot be unlocked to

become the full version, instead, when someone

purchases the game, he or she will get a self-contained

executable of the full version. This could aid in security and

avoiding ‘cracking’ the game.

Limitations of the Free Version

 Contains only about 25% of the gameplay (and storyline)

 Cannot watch final cutscene and see what happens in the end

 Cannot unlock the game’s “quick play” feature to replay your

favorite bits

Interview

I had a chance to talk to Gareth Tilt, the creator of Sixty

Five Million and One BC, and see – very briefly – his

opinion about the path he took with his game

commercially and his advice for other future commercial

game developers.

Why did you use the distribution method you

chose?

Using a software registration service meant that I didn't

have to set up my own payment system. It was a practical

time-and-effort-saving option.

Did you initially plan for the game to be

commercial?

Not at all, I would have been horrified at the idea of

charging money for one of my games a couple of years

ago. It only started to seem like an attractive idea when

the game was nearing completion and generating lots of

positive feedback from testers.

Do you believe your distribution method has

been successful?

Yes, about as successful as an old-school Game Maker

platform adventure game can be in the real world!

Do you have any advice to those planning on

making commercial games?

I think it probably helps to spread as much awareness of

your game as possible while it is still under construction.

Doing so helped me a lot to ask for preview articles in a

couple of the Game Maker magazines.

Conclusion

As an indie game developer wishing to survive in the

commercial game market, it is important to be able to

realistically define the word ‘success’. In my own, self-

proclaimed ‘correct’, definition of success, 65 Million and

One BC has certainly been a successful game, both as a

demo amongst the YoYo Games and Game Maker

communities, and as a commercial games across a base of

dedicated, albeit niché, users and fans.

■

By Eyas Sharaiha

Going Commercial with

August 2008 MarkUp Magazine 11

E
d

ito
rials

The most common perceived use of Viscerality as seen in

modern day professional video games is (in order of Genre

from best and most noticed to least and lesser noticed):

1. FPS (TPS and Strategy shooters included… saved

my butt from all you Gears of War fans, myself

included)

2. MMORPG

3. RPG

4. Sports

5. Platformer

6. Fighter

7. TDS

8. Puzzle and card games

9. Other unmentioned genre(s) of games.

So let us look at the top dog of Viscerality: FPS. I will speak

of others, and if you are currently creating a game that is

not of the FPS genre, you should try to think of how the

same principles might apply to your game’s genre.

The categories to come are the important elements of

Viscerality, and their successful integration and

implementation in games is what makes FPS games, or

any other genre for that matter, successful.

Gameplay

If you truly are reading this from some form of a

professional game creator’s standpoint, gameplay is the

absolute, number one meaning of games! Think, where

would the video game industry be if it was not fun?!

Another question is, because games are generally fun,

how much will this industry move further in the future?

Anyhow, if Gameplay is the whole core value of games,

then why do some of the games on the Game Maker

Community (some on YoYo Games, or even commercial

developers) sometimes have horrible gameplay? This is

the absolute toughest thing to implement under extreme

technical terms (as in, it’s tough to define, create etc.) and

we should praise anyone able to create a game that is fun,

no matter what the graphics, sound and music, and/or

overall design is!

Obviously I am not trying to make it sound like graphics,

sound and music, etc. are not worth it, so I will start a long

process of “defining” gameplay.

To start, let’s look at one of my personal favorite games in

the history of YoYo Games (and Game Maker) so far, and

that is: Karoshi. Why did I choose Karoshi of the oh-so-

long list of titles of freeware games out there? Simply put,

game is fun while not repetitive. It is rewarding according

to those that stick through 2Dcube’s puzzles until the end.

It has more than one gameplay mode of which stand out in

their own unique way with the others, an easily navigate

able menu for quick replaying of the levels, the levels are

short and aren’t too hard to figure out, good graphics, the

storyline isn’t monotonous, and yet still fun to follow

through. The biggest thing that fuels fun – in my opinion –

is creativity. A big factor that plays a role into adding

creativity into a game is originality, proper

documentation, planning, and (most importantly)

happiness for the developer. If you plan for your game in

an organized way, then while you are developing your

Viscerality (Vice-Er`-Al-it-ee) is a term I stole from the Game Informer magazine by

GameStop. Viscerality has to do with how much a player is sucked into the game, how

blind he or she is of his or her surrounding(s).

By erthgy

August 2008 MarkUp Magazine 12

E
d

ito
rials

 game, you will notice tremendously fun ideas

implemented into your game. I find that the best time for

me to plan is right before I go to bed, as that is when my

mind is most active (as well as a large percentage of

people). Another large trend you will need to unveil your

skills and time in creating your game on is feedback. This

is almost 70% of revising and checking your game (maybe

more!) So it’s extremely important to do so, even if the

cost is another week of seemingly “monotonous”

development.

Just make sure your game is fun before you release it,

simple as that.

Good Graphics

Not just good, but fitting as well. The idea of this is to get

the players to stop looking at the real world outside of the

monitor or TV box, and to get them to start gazing at your

extensive world in-game. The fact that it is that 3D makes

you lean forward a little bit or squint your eyes, because

the graphics are optically illusioned to look further away,

and to keep you on the edge of your couch, waiting for the

next graphical display to appear and ‘come closer’. While

in 2D games you would be sitting in your seat normally,

still concentrated on the game, hardcore 3D gamers, will

have a little trouble adjusting to 2D gaming, and vice-

versa. A hard thing in creating graphics is proper shading.

Make sure you look at as many shading techniques, and

change them in game as it progresses to make it realistic.

Example: Gears of War, New versions of Mario, etc, (you

barely have to look).

Expert Sound and Music

Music

This could arguably be the number 1 reason of Viscerality,

but, for one thing, it is hard to compare/contrast sound

waves and pixels, secondly, it is another for one to

compare/contrast different media forms, and let alone

game genre’s! Anyhow, fitting music not only invigorates

the body and the soul, but also influences the player to

enact greater acts of valor in the battle field (or against the

enemy AI or whatever you want to call the challenge in

your game).

Example: In the classic strategy hit title of 2004, Rome

Total War the music changes according to what happens in

the battle field. The most noticeable one is when your

legions get attacked from your flank with a cavalry (not

Calvary, this is often mistaken by many Americans, myself

included since I almost wrote it) charge. Once your unit

gets hit, the music (drums, guitar, and vocals) switches to

a fast paced beat. Activision and Total War created this in

such a unique and almost perfectly timed way that it

makes the player want to counteract this attack, twisting

and mixing the music in with the gameplay.

Sound Effects

Sound effects are sort of the feel of a game, a gloomy

sound should happen when you fail to complete your

objective, and a happy sound should happen when you

By erthgy

August 2008 MarkUp Magazine 13

E
d

ito
rials

 defeat a level. Many games at the GMC lack this very

important quality in gaming. The best ways to create your

sound best fitting (some would call it higher quality, but

like I said in graphics, the 2 are important but very, very

different) is to think about how the object functions, the

graphics of objects in your game, what sound would this

action make if this happened in real life, and when to put

the sound in (as in, which event). Sometimes professional

video game developers have even tried sounds in real life

for physics sake, just to get it right. I suggest (if possible)

that you try to re-enact your game’s sound effects in real

life. Just to get the physics right, and especially in

platformers as they involve a lot of physics

Example: Many of you are creating a game for YoYo

Games’ third competition. So let’s say that your game is a

puzzle game that is based off of a civilization. You have to

move blocks to a certain form for them all to be deleted

and complete the level. These blocks are heavy, brown,

and move slowly when you interact with them. When the

player moves these blocks, you should make a slow, deep

sound since the blocks are heavy, and the heavier the rock,

the deeper the tone of sound.

Room Design

A lot of Mario type games have Room Design

implemented in them incredibly well. The fact that “Ooh,

they put that there, and wow, I found a secret here...” It all

adds up to a very well put together room (which in turn,

gives better gameplay, leading to an overall better game).

A lot of people, (when they are rating a game, of course)

combine Room Design with Gameplay layout, as Room

Design is arguably half of Gameplay. I do not necessarily

have a problem with that, as long as they realize sooner or

later, (when they are creating their games) that Room

Design is a stupendously awesome power that is essential

to all games, and should not be underestimated.

Example: A few examples are Gears of War; the company

(Epic) who created the game knew EXACTLY how to put

this cover here and face it there, precisely so that it creates

the power and weakness that had been necessary for the

game to be balanced. The whole idea behind Gears of War

and getting used to its cover system is to find the perfect

combination of hiding until the last possible second, and

shoot, then chainsaw or melee out (according to your

weapon) the enemy.

Another commonly known example is any Mario game for

just about any console (Wii included, I’m not that much of

a die-hard 360 fan!). You have to wait for the perfect

opportunity to get from one part of the level, to the next

part (normally left side of one level, to right side of the

same level). Especially on the later levels where players

find themselves waiting for the perfect opportunity to

dodge the moving walls, get to a safe spot where a wall

cannot squish you, and wait for the walls to move and

create spaces for the player to platform on. Then you

repeat the process, trying as hard as you can to get as

much of the coins as possible to beat your high score.

By erthgy

August 2008 MarkUp Magazine 14

E
d

ito
rials

Comfortable Controls

You really do not need to worry too much about controls

in your game unless if the game is “a genre of its own

kind”. If your game’s controls are unfitting; then your

game audience (meaning pretty much anyone in the case

of the GMC) will presumably stop playing the game after

2-4 minutes of gameplay. Think, if someone is describing a

shooter to you, you would say “Oh and I guess the controls

are WASD”. Think how awesome it would be if the person

they were talking to responded like “Actually, the game

has the idealized form of WASD into it, but it is so

advanced and strategically remarkable that you don’t

fairly notice the control sketch.”

The biggest (non-FPS) problem and example I can think

here is the TDS genre on the Game Maker Creation’s

section of the GMC: About 1/3 to 1/2 of the games created

there force you to use arrow keys instead of WASD. This is

very hard on hardcore FPS fans, as they are not used to

such a close squeeze of your mouse and keyboard hand(s);

in fact, none of the 3 types of gamer audiences actually

feel this style of controls is comfortable. Besides, it’s not

that hard at all to implement such controls, and to tell you

the truth. (*Cough*right click on event arrow keys for

main player and left click on the appropriate WASD

key*Cough*. Man, my cough from old man winter still

hasn’t left me!) Just make sure the controls are unnoticed

and comfortable when your targeted audience plays your

game, and they will be of good quality. Another thing that

really will help you is to ask the testers of your game as to

whether or not they feel as if the controls sketch was

appropriate or not, they give back feedback, which is very

likeable by any developer.

Replay Value

Replay Value not only consists of having a game that is fun

to play more than once, but also of creating games that

are not repetitive in any way, shape, form, ability,

function, etc. Many times have I played games that are on

the Game Maker Community, (and also the YoYo Games

Community) have extreme resistibility to the player. We

have to go back and test our games before we release

them… Not just us, but at the very least one video game

fan (other than you) of your targeted audience, and at the

very least one video game fan not in your targeted

audience to give you feed back of your game. After they

have played through the game once, have them play

through it another time, ask them how well they thought

the game was made, then finally have them tell you what

they would have different (or they might tell you that your

game is just “plain awesome”). The only problem with this

is, many people grade games inaccurately, other people

are just plain bad at explaining things, or unwilling to

actually grade the game a fair treatment and will unfairly

be like “good” or “not good” with no explanation of a

“why” whatsoever. So make sure that you get a good form

of judgers when you are looking for Quality Assurers. This

ensures that your game is fun or shows you what you need

to improve on. (Back to resistivity), play through your

game as if you were completely new to the game and/or

game genre, but you are an average video game player,

pretend you play video games maybe less than an hour to

three hours per day, are the game’s controls too hard to

pickup if you haven’t played the game or any genre like it

before?

Now here are the biggest/common mistakes I notice on a

game that are too repetitive are:

Not enough save files per game

This is quite self-explanatory; quite frankly though, many

developers miss this because they test their game out so

much that they are too good at it. (Therefore making it

quite unnoticeable, as they don’t need to use it as often,

By erthgy

August 2008 MarkUp Magazine 15

E
d

ito
rials

 and discover of its deficiencies/annoyances as often as

they should.) If your levels are long or even moderately

sized, hard, or even repetitive, then you should at the very

least put a save file in the middle of such levels. Perhaps

another way you could do this is to have a hidden semi-

secret item, that – when obtained by the player – could

save the game and give the player points (not to mention

self-confidence).

Not having enough challenge

Generally speaking, if your game doesn’t have enough

challenge, you either did not program enough AI into it,

need to do some form of room re-designing, or add more

gameplay elements into your game (that sort of goes

along with AI, but I just decided to put that in as an add-on

because it sounds cool). Another way to add more

challenge is by putting hidden items in your game. The

player must fight or get past so-many legions of enemies

to obtain such item (and earn Achievements if we are

talking about the Xbox 360, your choice though!). Just

make sure that the game has more than one way to defeat

it if you decide to add a hidden item system, so that you

can still complete the game without such secrets, and

keeping that feeling of accomplishment to finding such

items. Think, will your game’s secrets alter the game’s

outcome? Or will they merely add a point or two to the

high score list? Are they too hard to find? Again, ask the

people who test your game.

Not having enough lives

This goes along with “Not enough save files per game”,

but in games like Mario, it is extremely essential that there

are enough lives to vary it up a bit (which gives the user

select mobility, which is very good). If there are not

enough lives in the game, and the player dies many times

per level... Then I am sorry to say this, but, your game will

be too delicate to play for most audiences that might play

the game to begin with, and therefore players (even good

fans) that actually try to beat the game, will probably get

driven away before beating it.

Bad HUD

HUD stands for Head-Up Display. Some people don’t

know what a “Head-Up Display” is, but a HUD is really the

player’s mini-map in a FPS, score counter in a platformer,

and other things besides the games’ screen that are

trackers or useful add-ons/controls to the player. It is just

downright annoying for games to have bad HUD’s. Yes, I’m

talking about the ones where the screen is only ¼ of its

normal size because of an oversized, unkempt HUD. If

your game does have a bad HUD, then EVERY SINGLE

TIME players play the game, they will seem to be pushed

away from your game. Many games don’t have this

problem, but it can be overlooked on the developer’s part.

Bad Scoring system

Now, I’m not saying you need a scoring system like

Microsoft’s Xbox Achievement awards, but your game’s

scores need to have a varying output. In reality, the only

way to have a varied score system is to have high numbers

and ranges. Sometimes, you will have to use math and

creative ability to get points in a platformer like Mario.

Hey, have you ever wondered why Mario’s points are so

numerous? It’s because Nintendo wants variation in that

particular system, they want some things to be different

than others. Think of how much of a cheap idea it would

be, if players had to practically beat the game 5 times,

looking for secrets that are only 1 point. While at the same

time, there are other objects in plain view that are worth

the same value. A good way to balance your game (point-

wise) is to use math. It really isn’t that hard either; you just

have to think... For instance, in a TDS where a player

might get 10 points for killing a zombie, say there’s a boss

that takes 60 times as many normal shots to kill, how

By erthgy

August 2008 MarkUp Magazine 16

E
d

ito
rials

 many points should the boss reward the player for

defeating it? Well, if the original zombie took 1 shot to kill,

and the boss took 60 shots to kill, the 1 times 60 is the mini

“formula” we will use for this: so, 10 points x 60 points =

600 points. There you have it; we magically balanced your

game’s scoring. Other times, it is good to sort of

“unbalance” the game if this “formula” type system

disrupts the game’s creative flow, it is fine to just give it its

own set of point value. The tough part here is determining

whether or not 2 things are related, though.

Example: So, let us say that there’s a different enemy that

doesn’t get killed from shots, maybe just an energy gun

(perhaps one like in Halo) and the energy from the gun

recharges after a certain time, according to how powerful

it is. This is the case where you would want to create a

different health deduction formula, you would probably

base this health system on how long the recharging of

energy takes, how the gun shoots, how hard it is to aim,

how much power it has, and finally, how fast each shot is.

Just do whatever fits your game the most, but remember,

always highly consider of the variables put before you, as

an unbalanced heath/score system in game shows

unprofessionalism (or in our case, De-Viscerality!).

Bad English

Sometimes I do feel that the problem of bad English is

continuously ignored by game developers. They think

“Oh, well, English doesn’t matter”. Another thing they

may think is, “Oh, well if it sounds right, I’ll use it”. There

are quite a few things wrong with that quote right there.

Firstly, if you don’t care about the English rules in the first

place, then how the heck are you supposed to know if

something ‘sound’s right’?! Secondly, what if you heard it

incorrectly, or “speed-read” through a text box’s text

(which you thought you were correcting) in your game?

Humans cannot rely on themselves to detect and

neutralize their own problems in life. There, now that I

got that out of my mouth, let’s get into the actual English

teaching. English is not necessary for life. There, I said it.

(Now I’m feeling the burn), but remember, English is

necessary to create a good impression for doing business

or trade with someone else (most likely, other

businessmen, (or businesswomen)). Think, how

unprofessional would it look if in every game ever created,

the letter “I” had been un-capitalized; there had been no

punctuation marks, incorrect spacing, wrong spelling,

word infusion (i.e.: Making up words like “shisn’t” or

something weird like that.) Any person that correctly

knows, (and cares!) for the sake of proper English, will

correct you. I will give you a list of common English

mistakes, (I’ll list the incorrect word/phrase, then the rule,

then the correct word/phrase. Also note that these are not

in any order, but please do check them before distributing

your game, or even better, before you start scripting (plot

wise, like writing the story line or message box in your

game, not GML code!)) To help you people out, I put the

incorrect version of the English words in italicizes, and

quotes.

Are and is

“You students is in big trouble!!” Why is this wrong? Because the

rule states “A singular noun has a singular verb, and a plural

noun has a plural verb.” (Plural simply means two or more,

singular means one, this has to do with the number of things, in

our case “students” would be plural, as the s at the end of it

indicates two or more. Ok, so now what would the corrected

By erthgy

August 2008 MarkUp Magazine 17

E
d

ito
rials

version of that phrase be? “You students are in big trouble!!” See

the difference? Since “students” had an s at the end of it, that

would make it plural, and “are” is the plural form of “is”.

(Remember: Another way to remember “if a noun is plural or

not” is to see, in the context of the word, is it talking about one?

(If so, that is singular, notice “single” is the base, (or first) part of

the word “singular”.) OR, is it talking about two or more? In our

case, it would be plural.)

May and Can

Oh my goodness! May and can are the absolute most hated

words to any English scholar (or anyone smart in English). “Can I

get a hot dog?” Here is the rule for May and Can “May is used to

ask permission, can, (on the other hand) is used to ask “is it

possible to do this?” So, technically, that question in the quote

which I said was wrong, isn’t wrong. The only problem is that… If

you needed to ask if it was possible for you to get a hot dog, and

all ready knew that you had permission to do so, then why not

just get up and get one? That is why (we assume) that the quote

is wrong, because the person was asking if he could have

permission. So, the correct way to ask the phrase is, “May I get

a hot dog”. See how much smarter you’re sounding all ready?

Capitalizing “I”

“Once i looked over this rule, it was very evident to me that we

(humans) are very selfish to make up such a rule as this (you’ll

understand further as I elaborate (or explain) this rule.” The way

the rule works is if you are writing English then the word “I” is

ALWAYS capitalized. Additionally, make sure “I” is always

capitalized, so if you also meant something like “The letter I is

my favorite letter”, then you would still capitalize it, but put it in

quotes if you are hand writing, or italics if you are on a PC.

Than/then

“We went to the store, than went to the video game shop.” Why is

this wrong? For this particular example, we will have to look at

the meaning (sometimes called context) of each of those above

words. ‘Then’ is used as a continuing word in lists that connect

each other together. One way to help define “then” is to replace

it with the phrase “next in line” and see if it makes sense. Ex: We

went to the store, then to the video game shop.

As for the word “than” could be replaced with “instead of” and

see if that makes sense. For those that are all ready English

smarty pants, notice that “than” could also be considered as a

coordinating conjunction, meaning that it connects (in a way)

two independent clauses. (If those sentences up there confused

you, ignore them.) Ok, here is our example of the use of the

word ‘than’: “I would rather you buy Halo 3 than Super Mario

Galaxy, just because you don’t own a Wii.” Now, try substituting

the word “than” in those quotes with “rather than”, and notice,

it works.

Conclusion

Thank you for reading my long discussion on Viscerality,

by the next issue (or two) of MarkUp, I will have another

article about this subject with charts, tips, and strategies

to make your game the best as it can be. But for now,

good luck, and I hope you have enjoyed reading this article

(as much as I enjoyed writing it).

■

By erthgy

August 2008 MarkUp Magazine 18

S
crip

ts

Background

The determination of the normal to the point on a surface

is incredibly important in game design in many ways; it

allows you to achieve more realistic collisions, allows you

to achieve smooth collisions with a wall object (where a

player continues to move along the wall after colliding

with it at a certain angle), and much more. Therefore, I

present to you the normal_detect script, which returns the

direction of the normal to the surface at a given point.

The Script

/*

** Usage:

** normal_detect(x,y,obj [,rad [,res]])

**

** Arguments:

** x,y point on the surface

** obj an instance or object

** rad radius of test area, positive int, optional (default 4)

** res resolution of test, positive int, optional (default 1)

**

** Returns:

** a surface normal (in degrees), at the given point (x,y)

** on or near the given (object) by scanning an area of the

** given (radius) and (resolution), or (-1) on error

**

** Notes:

** Makes approximately pi*radius*radius/(res*res) collision calls.

**

** GMLscripts.com

*/

{

 var xx,yy,obj,rad,nx,ny,i,j;

 xx = argument0;

 yy = argument1;

 obj = argument2;

 rad = argument3;

 res = argument4;

 if (rad <= 0) rad = 4;

 if (res <= 0) res = 1;

 rad += 0.5;

 nx = 0;

 ny = 0;

 if (collision_circle(xx,yy,rad,obj,true,true)) {

 for (j=res; j<=rad; j+=res) {

 for (i=0; i<rad; i+=res) {

 if (point_distance(0,0,i,j) <= rad) {

 if (!collision_point(xx+i,yy+j,obj,true,true)) {
nx += i; ny += j; }

 if (!collision_point(xx+j,yy-i,obj,true,true)) {

 nx += j; ny -= i; }

 if (!collision_point(xx-i,yy-j,obj,true,true)) {

nx -= i; ny -= j; }

 if (!collision_point(xx-j,yy+i,obj,true,true)) {

nx -= j; ny += i; }

 }}}

 if (nx == 0 && ny == 0) return (-1);

 return point_direction(0,0,nx,ny);

 }else{

 return (-1);

 }}

Explanation

The basic required input to the script is simple: two points,

x and y that refer to a certain position on the surface of an

object, and the name of the object or the instance of an

object which is being referred to.

Powered by GMLscripts.com

http://www.gmlscripts.com/

August 2008 MarkUp Magazine 19

S
crip

ts

After providing the script with the given arguments, it will

return the following:

The returned direction is of course a typical Game Maker

direction value: it is in degrees and measured counter

clockwise beginning from the right.

Alternatively, you can supply additional arguments to

tweak the script to your taste.

Other than the object and the x and y points on the

surface, you can also check the radius of the area to be

scanned. The default radius is 4, but if –for instance – you

need a more accurate value, you might consider increasing

the radius for instance, however if for instance the radius

superseded the width of the object, you might get wrong

returned values, etc. The resolution is the amount of space

between every two checked points; it is 1 pixel by default.

The Script

Special thanks to xot for creating the script.

You can find the script here:

gmlscripts.com/script/normal_detect

Conclusion

This is a pretty awesome script I must say, and I’m glad I

found it! This has a lot of potential benefits in Physics,

motion, and interaction with objects; I hope you make

good use of it!

■

Powered by GMLscripts.com

http://www.gmlscripts.com/script/normal_detect
http://www.gmlscripts.com/

August 2008 MarkUp Magazine 20

E
x

te
n

sio
n

s

 The INI DLL

Kyle_Solo created a new extension: the INI DLL. To quote

the (very quick) description of the extension:

INI DLL lets you:

1. Edit multiple INI files at once

2. Edit INI files in any folder

3. Does it faster than any other system (including

Game Maker!)

How this is better than Game Maker

One of Game Maker’s limitations when it comes to

handling the INI file format (which is an excellent previous-

and current-generation data storage format) is that it only

reads INI files in the current location, and this extension

overcomes this limitation.

Another limitation of Game Maker is that it is only capable

of reading INI files; while file writing functions can be used

to edit the INI files, the process is rather manual, keys and

sections cannot be easily found and modified, etc.

This extension, on the other hand, is capable of deleting

keys of your choice as well as entire sections, checks for

the existence of keys and sections, and reads various data-

types from the INI file as well: integers, strings, and

doubles (equivalent to ‘real’s in GM).

The INI Data Storage Format

INI is most frequently used to store game settings, but

that doesn’t take full advantage of the INI file format; the

concept of sections would only be used in game settings

INI files to make the file ‘neater’ and not more. INI files can

store level settings to multiple levels out there, level

editing information, stats and different numbers (damage,

speed, strength, health, etc.) of the various enemies in

your game to allow yourself to have multiple types of

enemies from a single object or ‘template’ by simply

changing numbers, values, and probably references to

image files or sprites, etc.

Conclusion

Overall, the INI data storage format is very useful and this

DLL extension allows you to take more advantage of it.

Get it now:
gmbase.cubedwater.com/?page=extension&id=177

■

Powered by GMBase

http://gmbase.cubedwater.com/index.php?page=extension&id=177
http://gmbase.cubedwater.com/

August 2008 MarkUp Magazine 21

T
u

to
rials

What is a data structure?

A data structure is simply said a collection of variables.

Data structures can be compared to arrays, although

they’re a bit more advanced and easier to work with.

They’re not only used in GM, but also in other

programming languages. GM offers 6 data structures to

work with: stacks, queues, lists, maps, priority queues and

grids. A stack can be compared to a pile of dishes in a

kitchen. The last dish that’s put on the pile is the first that

will be taken off (it would be difficult to take the dishes

lower on the pile). A queue probably doesn’t require an

explanation. Lists can be compared to single-dimensional

arrays in GM. At each index, an array contains a value. The

same is true for lists. Maps contain key-value pairs. This is

a very handy data structure to make an inventory, for

example. A priority queue is the same as a normal queue,

but the values have a priority. And finally, grids can be

compared to two-dimensional arrays.

So now you have an idea of what data structures are and

what they can be used for in GM. Time to have a look at

the implementation.

The Basic Idea

Lists can be compared to single-dimensional arrays.

According to the GM manual, they’re even implemented

using arrays. It is obvious that we will use arrays to store

the actual data for these data structures.

Lists have a few advantages compared to arrays:

 They have an id. Arrays do not have an id or any

reference.

 There is no limit to the number of values in a list.

 Single-dimensional arrays can only contain

32000 values.

 They can be destroyed so that the memory they’re

using is freed. There is no way to destroy an

array, unless the object that contains the array is

destroyed. Global arrays cannot be destroyed (you

can interpret these arrays as being local to the

program, so they’re destroyed when the program

ends).

 GM has functions to manage lists. There are no

functions to insert or delete a value from an array.

This needs to be done by using loops.

Keeping these things in mind, we’ll try to find a way to get

the same functionality. A first possibility (using a global

array) would be the following:

In Game Maker version 6.0, functionality to add data structures was added. Data

structures offer an easy and efficient way to store and manage data. They are only

available in the Pro edition of Game Maker, but it’s actually pretty easy to implement

the same system yourself. This article will explain how to do this for list structures.

Other types of data structures can be made in a similar way.

By Bart Teunis

August 2008 MarkUp Magazine 22

T
u

to
rials

A two-dimensional array can be seen as an array of single-

dimensional arrays (lists). That way, a two-dimensional

array can be used to store lists. The row number

represents the id of the list. The first value in each array is

used to store its size. For a list that has been created and

also destroyed, -1 is used. This does mean that this

memory space can no longer be used since the counter for

list ids is only incremented, not decremented... This is not

the only problem. Suppose a single list is needed. The first

row is the first list and this is the only row that should be

filled with values. Now suppose it is filled with 10000 real

values. This means that 10000 * 8 bytes = 78,125 kB of

memory is required. No problem, you’d say. But GM

allocates memory for the array in both dimensions. That

means that the actual amount of memory used is 10000 *

10000 * 8 bytes = 763 MB (!) for a single array of 10000

items. That’s just ridiculous. It’s clear that this possible

solution only causes more problems. And it wouldn’t work

for other data structures, either.

A second possibility uses a completely different approach.

GM uses objects. These objects can have local arrays.

When an instance of an object is destroyed, the memory

used by its local arrays is also freed. And instances of

objects also have ids. Now that’s nice.

The solution is obvious now. We use an object that serves

as a blueprint for list instances. Creating a list actually

means creating an instance of the list blueprint. This

instance has a local array of values (the actual list) and a

variable to keep track of the list’s size. When the list is

destroyed, the instance is destroyed and the memory used

by the local array is freed. And viola, that solves the

memory issue. A small disadvantage: GM objects have a

lot of built-in variables that we actually don’t need.

However, the amount of memory used by these variables

is negligible. Writing ds_list scripts also becomes very

easy. The list id (instance id) can be passed as an argument

to a script. Internally, the script uses a ‘with’ statement

with that id. The dot operator (.) can be used as well.

This solution clearly has many advantages:

 easier to implement because objects and

instances already have id's, which is exactly what

we need

 memory is freed after the instance (and thus the

array) is destroyed

 easily usable to create other data structures

(queues, stacks, maps, grids, ...) as well

 no longer a single, large, global array to store all

arrays

The limit of 32000 items will remain, though. It won’t get

much better than this. So now that we know all this, let’s

have a look at the implementation.

Implementation in Game Maker

The first thing we need is an object that will be the list

blueprint. We will name this object obj_list. As an

unregistered user, you cannot use the object_add function.

That means that you need to add obj_list yourself each

time. That’s not very user-friendly. We’ll find a solution for

that later in this article.

As explained in the previous part, this object needs a size

variable. It is not at all necessary to add this variable

through a piece of code in the object editor. This will be

done in the list creation function (ds_list_create). Time to

have a look at it! As mentioned before, creating a list

means creating an instance of the list object:

var inst; inst = instance_create(0,0,obj_list);

inst.size = 0;

return inst;

The script returns the id of the instance. When we speak of

lists, this is the id of the list. Note that, for the user of this

By Bart Teunis

August 2008 MarkUp Magazine 23

T
u

to
rials

script, it works in the exact same way as the original

ds_list_create function. Also note that here, the “.”

operator is used to set the size variable for the instance.

The following piece of code is just as valid:

with (inst) size = 0;

Destroying a list means destroying the instance of a list

object. The ds_list_destroy script looks like this:

with (argument0) instance_destroy();

A problem that can occur here is that the user of this script

accidentally passes the id of an instance of another object.

To avoid this problem, the following condition can be

added:

if (argument0.object_index == obj_list)

This condition can be added to all scripts that require a list

id as an argument.

Now let’s have a look at some other list functions. In all

these functions, argument0 is the list id.

Clearing the list (ds_list_clear) is simple, too. The size

needs to be set to 0. This doesn’t clear the array from

memory, but it’s the only way to “clear” the list.

with (argument0) size = 0;

Return the size of the list (ds_list_size):

return argument0.size;

Check whether a list is empty (ds_list_empty):

return (argument0.size == 0);

The ds_list_add function is the first function that actually

sets an array element. Before that, the instance doesn’t

even have an array. We’ll call the array array (yes, it’s very

unoriginal). The script then looks like this:

with (argument0)

{

 array[size] = argument1; //argument1: value to add

 size += 1;

}

Can the size += 1; statement also be put before

array[size] = argument1;? It depends. When the size is

incremented before the array value is set, array indices will

start from 1. When the size is incremented after the array

value is set, array indices will start from 0. List indices in

GM start from 0 so we will put the increment statement

after the assignment.

Deleting a value is a bit harder to do. The simplest way to

do this is as follows: when a value is deleted, all values with

a higher index than the value that needs to be deleted

move 1 index downward. Or said differently: all values,

starting from the one that needs to be deleted, get the

value of the next item in the array. After that, the size is

decremented. The figure at the bottom should make

things more clear.

Array start
Array end

Value that needs to be deleted

89 1 19 8 12 17 65 23 14 54 70 11 5 0 0

By Bart Teunis

August 2008 MarkUp Magazine 24

T
u

to
rials

It looks like this in gml:

with (argument0)

{

 var i;

 for(i=argument1;i<size-1;i+=1) /*argument1:

position to delete*/

 {

 array[i] = array[i+1];

 }

 size -= 1;

}

Retrieving a value from a list will be necessary, too. This

can be done with the ds_list_find_value function:

return argument0.array[argument1]; /*argument1:

position of the value*/

And that concludes the basic functionality for lists. For

some other scripts to work with lists, you can have a look

at the completed scripts package that can be found here

for GM7: lists.gmk and here: lists.gm6 for GM6. The

maximum size of a list is 32000 items. A small

disadvantage of GM6 is that when you use ds_list_..., it

gives the error: “This functionality is only available in the

registered version.” That’s why the scripts in the gm6 file

all start with ds_lst_. In GM7, the scripts are executed

instead of the built-in functions with the same name.

Completing the Package

Now the scripts do what they should do, but you also need

to add the object each time. It would be nicer if everything

could be added all at once. Time to complete the package!

Open a new GM file and add all the scripts to it. Also add

an object called obj_list. Don’t add anything else. Save

the file as lists.gmk. Now you have yourself a nice

“extension package” (not one like the ones GM uses, of

course). If you want to add the ds_list functionality,

simply merge the lists.gmk (or lists.gm6) file with your

game and you’re ready to use lists.

Conclusion

GM has functions to work with lists, but they are for

registered users only, the scripts and implementation that

we have done works for all users. This article has explained

an implementation of lists by using local arrays. The

method used here can also be used to add other types of

data structures.

■

By Bart Teunis

http://www.bart-teunis.eu/gm/markup/examples/lists.gmk
http://www.bart-teunis.eu/gm/markup/examples/lists.gm6
http://markup.gmking.org/node/add/application

August 2008 MarkUp Magazine 25

T
u

to
rials

The .NET Framework is not lightning fast, but

programming with it is. The .NET Framework is an

immensely easy platform to build upon, and for larger

projects it can save the developer a great deal of time. For

smaller projects, native code may be the way to go,

however, for large scale projects, the .NET can be a

valuable tool. Unfortunately, Game Maker can only

interface with specially constructed assemblies. Managed

class libraries (like most of those in the .NET Framework)

are often impossible to interface with from Game Maker.

However, it is possible to work around Game Makers

limited calling schemes and implement our own managed

class libraries from within Game Maker with very little

hassle. First I will outline some of the pros and cons of

implementing the .NET Framework, and then I will discuss

several ways to utilize .NET libraries from within Game

Maker and explain the benefits and problems with each

solution.

What you will need?

 The Microsoft .NET Framework 2.0 or higher

 A copy of Game Maker 7.0 Pro or higher

 Visual C++ and .NET knowledge

 Visual Studio 2005 Express or compatible software

 A copy of The Cool Gamer’s .NET Layer

Architecture of .NET

To understand what the differences between native DLLs

and .NET DLLs are, one must understand a bit about the

architecture of the .NET Framework. .NET is a language-

agnostic programming model, that is, it can be utilized

from any language for which a compiler which supports it

exists. To use .NET you must use a special compiler

because most code written using the .NET Framework

does not compile down to machine code; instead, it

compiles down to a platform-independent language

known as the Common Intermediate Language (CIL). The

CIL is then compiled at runtime (known as JIT, or Just in

Time, compilation) down to machine code by the

platform-specific Common Language Runtime (CLR). This

entire process is facilitated by yet another three letter

acronym: the CLI or Common Language Infrastructure.

Figure 1

If one were to browse a website such as the Game Maker Community (GMC), never

before having used the .NET Framework, one might assume it was a “bad” practice1 or

would be immensely slow2. However, this is not always the case. Granted, the .NET

framework is slower than many other similar API’s, however, that speed decrease

comes with many bonuses.

By Sam Whited

http://gmc.yoyogames.com/index.php?showtopic=317121

August 2008 MarkUp Magazine 26

T
u

to
rials

Assemblies

After your code has been compiled down to CIL code, it

must be stored somewhere that the CLR can find it to

create machine code. That location is called an assembly

and, by specification, that assembly must be a portable

executable (PE) file (Namely a DLL or EXE). In this case,

the assembly will be a DLL.

The Good

The benefits of using .NET class libraries instead of native

DLL’s are many. First of all, the development process is

much easier as many common methods - hashing

functions, file I/O, etc. - are already defined for you. The

.NET API is extensive, and can be put to good use.

Secondly, if you are using some version of Visual Studio,

.NET DLL’s are much easier to maintain and update than

native DLL’s. Also, code compiled to the CIL is platform-

independent so long as a version of the CLR exists for the

platform on which the developer wishes to deploy his or

her assembly. And finally, CIL assemblies are verified for

safety giving them better security than their native

counterparts.

The Bad

Of course, every rose has its thorns. Because .NET DLL’s

are not reduced to machine code at compile time they

often slower than native binaries. However, modern

computers are so fast that this speed difference is

negligible in most cases and if you are that worried about

speed you are better off not using Game Maker than you

are not using the .NET Framework. Therefore this point is

really a mute argument. It all comes down to what you

want, speed for your users, or easy programming for

yourself.

The Ugly

The .NET Framework is designed to run solely on Windows

(Unless you use the shared source CLI, however, its

licensing is very restrictive and does not allow for

commercial projects). This means that the Mac version of

Game Maker, or versions emulated on other systems, will

most likely not be able to utilize your extensions created

with .NET DLL’s. If you are looking for cross platform

interoperability, best stick with native code.

Using the GM .NET Layer

The methods of the .NET Framework are encapsulated in

classes and namespaces which are inaccessible from

within Game Maker. However, Game Maker can access

managed global functions which in turn can access

namespaces, create classes, etc. The Cool Gamer has

provided an easy way to do this using his GM .NET Layer3.

The GM .NET Layer resides between (you guessed it)

Game Maker and the .NET Framework. To use the GM

.NET Layer to create an instance of a managed object,

only a few simple function calls are required. First of all,

one must initialize the .NET Layer by calling layer_init().

This only has to be called once, before any other function.

Next you can load an assembly by calling layer_loaddll().

By Sam Whited

August 2008 MarkUp Magazine 27

T
u

to
rials

This function will return a unique ID that can be used when

referencing the assembly. Finally, one can create an

instance of any given object using the function

layer_createinstance(). Once an instance of an object has

been created, we can begin to access its member

functions.

Calling member functions of an instance is quite simple

and only requires one function call to layer_function().

However, there are a few restraints on what sort of

functions can be called. These restraints are not the fault

of the .NET Layer; rather, they are built into Game Maker.

All arguments and return types must be one of the

following types: (System.) String, or (System.)Double.

Also, if you want to call a function, it must be public and

cannot be static. And finally, the function can have no

more than 8 arguments.

Using .NET

While the GM .NET Layer is a great way to implement a

few functions it is more of a workaround than anything

else. Also, if you do not have access to the source of the

assembly from which you are calling functions, the GM

.NET Layer does not provide a way to suppress asserts and

may throw long debug traces which you do not want your

end users to have to deal with. In this regard, it may often

be advisable to create your own wrapper layer for your

individual project, or, if your project is going to be used

solely from Game Maker, tailor it specifically for Game

Maker so that a wrapper function is not even necessary.

The first approach has the benefit of being able to access

the .NET library without any structural modification to the

library. This means that, since you will be accessing the

library using C++, you can utilize functions which are

encapsulated within classes and namespaces. It also

means that you can call functions with all manner of return

and argument type just so long as Game Maker only gets a

double or a string. The second option requires that you

have access to the source code of the .NET DLL which you

wish to utilize.

Game Maker can access global functions which return

either doubles or null-terminating strings, therefore, you

can simply create global functions which are exported

from a DLL and can use the .NET all they want. If all of

your functions are exported, you don’t have to worry

about namespaces or classes (which can still be used to

store your data). Hereafter this article will require basic

knowledge of C++ and .NET. It is also assumed that you

know how to create a DLL for Game Maker, how to export

a function, etc. For more information see my article in the

August 2007 issue of MarkUp on creating DLL’s for GM.

Loading an Assembly

If you choose the first option, you will most likely want to

load an assembly for use by your function. There are

several ways to do this: first and foremost is to simply

select the assembly as a reference if you’re source code is

part of a Visual C++ project. To do this from Visual C++

Express click on the “Framework and References” section

under “Common Properties” in your projects properties

dialog. From this location you can add or remove

references which will be utilized in your library. If you are

not using Visual C++ (or if you would rather reference your

libraries from code) you can also use the #using directive

just as you would for any other DLL... So for instance, if I

wanted to link with a DLL called “MyDll.dll” from my

project I could either browse for it as described above, or I

could place the compiler directive #using “MyDll.dll” in my

code. The two methods are equivalent. There is, however,

By Sam Whited

http://markup.gmking.org/issue/6

August 2008 MarkUp Magazine 28

T
u

to
rials

a third method which we may want to consider, and that is

dynamic linking at runtime. The project properties and

#using are compiler time directives. They are simply sets

of instructions which tell the compiler how to behave. This

means that they are only “executed” at compile time, after

that they cannot be changed. However, for a DLL like the

GM .NET Layer (which takes an arbitrary DLL and

performs some action on it) we do not know the path to

the library we wish to link to until runtime. For this we

must use a useful little class buried deep in the .NET

Framework’s API called “Assembly”.

The Assembly class does exactly what it sounds like it

does; it holds information about an assembly. It can be

located in the System. Reflection namespace which means

that at compile time you will need to reference System.dll

using one of the two methods described above. Once you

have access to the System namespace, you can simply

create a pointer to an instance of Assembly and set it

equal to the result of one of the many static functions

provided in the Assembly class which act as pseudo-

constructors for Assembly (the default constructor simply

allocates memory). These static member functions include

the following:

 Assembly.Load();

 Assembly.LoadFile();

 Assembly.LoadFrom();

This means that to load an assembly at runtime all we

have to do is call one of the many overloads of these

functions; so for instance, listing 1 is valid code:

using namespace System::Reflection;

Assembly^ a = gcnew Assembly::LoadFile("MyDLL.dll");

Listing 1

Calling Functions

Once you have your DLL referenced, you can use it

however you would like. You can create and destroy

instances of objects, access namespaces, call functions

and member functions, etc. and, what’s more, you can

define and export global functions so that Game Maker

can do all this as well. Below is the source code for a

simple DLL which uses the .NET Framework to display a

message box.

Distributing Your Library

The final thing you have to remember before you allow

people to download your extension is this: you are building

your creation on a computer which has all of your projects

dependencies already installed. However, your end user

may not have any of the DLL’s your project relies on. This

means that you also have to make sure that they get

everything they need. Since you are using the .NET

Framework it is quite obvious that your users will need to

download it if they don’t already have it. To this end,

Microsoft supplies a redistributable package which may be

found on their website. This is a compact installer which

you are free to include with your projects (look for a link in

the resources section at the end of this article). There are

several other dependencies which your project might

require that aren’t quite so obvious, however. These

include components such as the MFC and ATL libraries,

and the VC Runtime Components. While these

dependencies can be statically linked into your libraries, I

would recommend packaging them with your library as

DLL’s. To check what files are licensed for distribution, you

By Sam Whited

August 2008 MarkUp Magazine 29

T
u

to
rials

can look at the file redist.txt located in your Visual Studio

installation directory. To find out what files your assembly

is dependent on, you can use the dumpbin utility installed

with Visual Studio. To do this load the Visual Studio

command line and call the following: “DUMPBIN

/DEPENDENTS [file]” where file is the path to your

assembly (for instance, ‘MyDll.dll’). Figure 1 is an example

of dumpbin displaying the dependencies for a DLL called

GiiMote. For simple DLL’s the only dependency will be

mscoree.dll (which is a part of the .NET Framework and

does not need to be redistributed individually), or

KERNEL32.DLL (which is a part of Windows), and will not

need to distribute other packages. However, if the need

arises, make sure you know the license of each assembly

you wish to redistribute.

Conclusion

Using the .NET Framework, the CLR, and managed C++

code or another CLI language in your applications may

seem like a hassle, but in the end it is a truly rewarding

experience. The .NET can expand Game Maker further

than many languages by easily implementing features

such as reflective programming, memory streams, high-

level operating system access and low-level hardware

access and in many other ways. It is a general interface

which encapsulates methods for nearly every situation. It

generalizes programming languages, bringing them closer

together and bridging the gaps between them. It is a

brilliantly engineered collection of software which, when

used properly, can be more efficient and user friendly than

code written without it. The .NET API’s make

development a breeze and are sure to save you a great

deal of time and effort, so fire up those compilers, add the

/clr switch to your command line, and explore the

possibilities of Game Maker and .NET.

Endnotes
1 Uuf6429
2 Uuf6429
3 Link

■

By Sam Whited

// If using Visual C++, simply reference these DLL's

// In your project's properties dialog.

// #using <System.dll>

// #using <System.Windows.Forms.dll>

using namespace System;

using namespace System::Windows::Forms;

#define exp extern "C" __declspec(dllexport)

exp double gmnet_show_message(char* message)

{

System::String^ m = gcnew

System::String(message);

 MessageBox::Show(m);

 delete m;

 return (1.0);

}

Listing 2

Figure 2

http://gmc.yoyogames.com/index.php?s=&showtopic=317121&view=findpost&p=2287092
http://gmc.yoyogames.com/index.php?s=&showtopic=317121&view=findpost&p=2279043
http://gmc.yoyogames.com/index.php?showtopic=317121

August 2008 MarkUp Magazine 30

T
u

to
rials

Background

For those who do not know what explode_string is, it is a

function (popularly found in PHP) that separates a string

into different substrings located in an array. They are

separated according to a “separator character”, which –

when present – causes the function to split the string into

one further ‘splice’.

For instance, the string:

“1997,1998,1999,2000,2001”

If such string was split so that “,” would be the separator

character, the result would be an array with five values at

[0...4] as shown below:

Index Value

0 1997
1 1998
2 1999
3 2000
4 2001

2-Dimensional Arrays

Now, what if we needed to parse a string into a 2-

dminesional array according to two separators? For

instance, if we had the string:

“year,car,cost;1999,Ferrari,200000;1999,Bentley,25000

0;2000,Ford,35000;2001,Hyundai,15000;2001,Kia,17000”

If “,” was the x-separator string and “;” was the y-separator

string, then we should get the following result:

Index 0 1 2

0 year car cost
1 1999 Ferrari 200000
2 1999 Bentley 250000
3 2000 Ford 35000
4 2001 Hyundai 15000
5 2001 Kia 17000

Parsing such string into a two-dimensional array could

surely be done in a multitude of ways. One way that might

occur when you first think about the issue is the

construction of ‘two loops’, one that parses the different

“rows” of the array first, and then another loop embedded

in that loop that parses each ‘row’ individually. However,

such method is rather time and resource consuming; for

every row that exists in the newly-created array, an entire

loop needs to be performed individually again – this time

on the row in seclusion – to actually parse it.

When you think about it, a lot of ‘duplication of tasks’

would be going on; the entire string was already read to

parse it into rows, why do we need to read the separate

rows all over again to parse them into fields?

My Method

The method I prefer to use requires the string to be read

only once, character-by-character, and placing the read

field into the respective row or column according to

number of ‘spotted’ x- and y-separator characters before

that.

Back in Issue 4 of MarkUp Magazine, I explained how we could use GMLScripts.com’s

‘explode_string’ function in order to parse CSV files. Recently, I received a request

asking me to write an article about exploding strings into 2-dimensional arrays, and

that is why today, I present to you explode_string_2d().

By Eyas Sharaiha

August 2008 MarkUp Magazine 31

T
u

to
rials

 The Script

/* explode_string_2d(Data string, X-separator string, Y-

separator string, Array_name string);

Eyas Sharaiha, MarkUp Magazine*/

var data,sepx,sepy,array,_X,_Y,_POS,_LENGTH;

sepx=argument1;

sepy=argument2;

data=argument0;

array=argument3;

_X=0;

_Y=0;

_POS=1;

_LENGTH=string_length(data);

if

(string(string_char_at(data,_LENGTH))!=string(sepy))

{

 data+=string(sepy);

 _LENGTH+=1;

}

current_field="";

repeat(_LENGTH)

{

CHAR=string_char_at(data,_POS);

if(string(CHAR)==string(sepx)) then

{

 //save previous string

 variable_local_array2_set(string(array), _X, _Y,

string(current_field));

 current_field=""; //reset current field data

 _X+=1; //move to next field

}

else if(string(CHAR)==string(sepy)) then

{

 //save previous string

 variable_local_array2_set(string(array), _X, _Y,

string(current_field));

 current_field=""; //reset current field data

 _X=0;

 _Y+=1; //move to next row; reset column count

}

else

{

 current_field+=string(CHAR);

}

_POS+=1;

}

Explaining the Script

First, you can see we have four arguments:

Argument Type Description

0 String The data string in which the set of character-
separated data is stored.

1 String The x-separator character. Must be a single
character otherwise the script wouldn’t work.
This separates different fields within a row.

2 String The y-separator character. Must be a single
character otherwise the script wouldn’t work.
This separates different rows within the ‘data
string’.

3 String The name of the array as a string. It must be a
local array.

One convention needs to be noted, and that is a 2D array

has two indices and is written in the following way:

Array[ind1,ind2]

Both ind1 and ind2 have real values. While physically, each

index doesn’t correspond to an actual dimension, it is

often assumed that the first index is the x-value and the

second index is the y-value of the array; therefore, ind1

corresponds to the row while ind2 corresponds to the

column.

The required variables are initialized in the script at first.

Then, the following lines of code are written:

if (string(string_char_at(data,_LENGTH))!=string(sepy))

{

 data+=string(sepy);

 _LENGTH+=1;

}

These are really just a couple of lines that make the script

more flexible in reading the string. For instance, if we

assume that a comma “,” separates the x values and a

semicolon “;” separates the y values, then a semicolon is

needed at the end of the script. In order to make such

placement of a semicolon (which will often be forgotten)

optional, these lines check whether or not the final

By Eyas Sharaiha

August 2008 MarkUp Magazine 32

T
u

to
rials

character is the y-separator, and if it isn’t, the y-separator

is added (and this is reflected in the length of the string,

since a character is added).

The variable current_field will be the variable that

temporarily stores the field that is being read (yet not

completely read). After the script finds a separator (either

an x- or a y-separator) the data in current_field will be

copied to a certain location in the given array, and the

variable current_field will be emptied.

A (single) loop is then performed that repeats itself on

each character in the string. The character is then read

using the function:

CHAR=string_char_at(data,_POS);

Now, to check the type of character present (a normal text

character or a separator character), we get a series of if

statements (Note: the if-else statements could be

substituted by a switch-case statement, alternatively).

if(string(CHAR)==string(sepx)) then

{

………

}

else if(string(CHAR)==string(sepy)) then

{

………

}

else

{

………

}

The first statement assumes there is an x-separator

present, while the second assumes a y-separator is

present. If both checks fail, the third block of code is

executed.

If an x-separator is present, the previous string that was

temporarily saved at current_field will be saved (as the x-

separator marks the end of a field in the middle of a row)

and then emptied. Afterwards, the current X index value

will be incremented by 1, since the next field will start

being read next.

If a y-separator is present, the previous string that was

temporarily saved at current_field will also be saved,

since the y-separator marks the end of a field at the end of

a row, as well as the end of the actual row. Afterwards, the

Y index will be incremented by 1 since the next row will

start being read. The X index value will be set to zero since

the next row must be read from the beginning and

therefore the first field in that row must reflect that.

If no separator character is present, the character CHAR

will be added, as is, to the temporarily current_field

variable so that it would be stored later on in a field.

If you want to use a switch-case statement instead of a

series of if-else statements, then it should look like this:

switch(string(CHAR))

{

case string(sepx): …;break;

case string(sepy): …;break;

default: …;break;

}

After each loop ends, the _POS variable is incremented by

1, allowing the script to read the next character

afterwards.

Conclusion

Such script needs to be run only once and will completely

parse the string into a 2-dminensional array of your

choice. The script parses the string into a local array, but

changing the “_local” into “_global” in the script will

change the array from local to global. Hopefully in next

issue, I’ll emphasize on how such way of exploding strings

into 2d arrays can create a CSV reader that is up to the

CSV specifications completely.

■

By Eyas Sharaiha

August 2008 MarkUp Magazine 33

T
h

e
 M

ak
in

g
 o

f…

 Getting started with design choices

When I saw the Ancient Civilizations competition up on

Yoyo I decided straight away I wanted to enter. I’m a real

perfectionist and as a result I can take a long time to

create something to my satisfaction, having a deadline

would be good for me as I’d be forced to not be over

ambitious, I knew I’d have to have a finished product in

three months. For the past year or so I had off and on

been working on another game, Zero Point, which ate so

much of my time I considered scrapping it on a few

occasions. That game taught me how to use Game Maker,

and as importantly- don’t try and make a game that would

require a studio’s worth of people by yourself. (I may

finish Zero Point one day but for the time being people will

have to make do with one level).

So bearing in mind I had a time limit I had to decide what

kind of game to make. What I needed was to not have to

make tons and tons of graphics. I like my games to look

good but it takes a long time. I thought the solution for

having a high standard of visuals but not run out of time

making them was to set the game’s location to one place.

The genre of game that would most suit just having one

location would be a puzzle game. With a platformer or

shooter the game mechanics are fairly standard, obviously

it differs from game to game but the main variation comes

from the worlds you explore and the enemies you

encounter. Two adventure games may have identical

systems but if the stories and environments are totally

different, they are different games. With puzzle games

however no one is impressed by a Tetris clone. Once

someone has made Puzzle Bobble no one would be

interested in someone else taking the idea and putting

different graphics on it. I had to therefore think of an

original concept.

It occurred to me in the majority of fast paced puzzle

games you directly control the objects that need

manipulating, where as in the majority of other games you

control a character. I decided I wanted to combine the

two. Something I always enjoyed in platform games was

when the platforms you were jumping about on were

moving relative to one another, it made the gameplay feel

more skillful. These were the factors that made me settle

on my game concept which was: different types of blocks

fall from the top of the screen, you control a character that

has to jump from block to block, the way you jump off

them determines where they go, stack the same type in

rows or columns, the more you get together the more

points you get when they are cancelled by a different type

of block landing on them. The game progresses by it

getting faster the better you do, the ultimate goal: get a

higher score than anyone else (using online high scores).

The main challenge from the game comes from having the

skill to move your character very quickly and from thinking

quickly, not hesitating when things get hectic.

The last thing I decided before starting to make the game

By Alaric Holberton (Rikrok)

August 2008 MarkUp Magazine 34

T
h

e
 M

ak
in

g
 o

f…

 was its setting. Out of the ancient civilizations I knew

most about the Egyptian, Roman and Greek so it made

sense to go for one of them. I settled on Greek as I

imagined the competition would be full of the other two. I

didn’t choose a title for quite a few weeks. At one point I

was going to call it “Jumping for Troy”, I cringed when I

said it to people though, so I’m glad I scrapped that.

Programming

Character control

My order of making a game tends to be code, graphics and

then sound, though I do mix that up a bit so I don’t get

bored of one thing, and obviously there’s overlap between

the three. I started with character control, the character

being at that point a green circle. I think the ultimate 2D

platformer gameplay is Mario; not sluggish nor

inaccurately fast, subtle acceleration and deceleration,

and control over how high you jump by how long you hold

the jump button for. It was this last point that required

some slightly unnatural code, simply because physically

it’s completely impossible- your downwards acceleration

(upwards deceleration) should be constant, otherwise

effectively you’re changing gravity depending on how long

you hold jump in the air. Still, it makes for a more fun

game, and I’ve never quite got why people would choose

realism over fun in a game (unless you’re talking Gran

Turismo, in which point making it arcadey would destroy

the point of the game, but then, I’d choose Burnout over

GT). Anyway, the way I dealt with this was:

Provided there’s nothing underneath our man, increase his

vspeed up until a certain maximum falling speed. When

you press jump (and you’re standing on something) don’t

simply momentarily set vspeed to a negative value but

instead as long as that jump button is pressed have a timer

increase, and set your vspeed accordingly. It’s very simple

code but many GM games miss it. Different values for

different times means you can still incorporate a decrease

in upwards speed but not have it nearly as much as your

usual gravity.

// Jumping

if (jumping == 1) {

 jumptime += 1;

 if (jumptime <= 5) {vspeed = -17}

 if (jumptime > 5) {

 if (jumptime <= 10) {vspeed = -12}}

 if (jumptime > 10) {

 if (jumptime <= 15) {vspeed = -7}}

 }

A little note about using “if…” within another “if…”,

unless you have to use an “else” statement afterwards it’s

much better than using “&&” because if the first statement

is not true the computer doesn’t have to read anything

else. It may seem small but over the whole code of your

game it does make a sizable efficiency gain. My current pc

is a nice 3GHz dual core, but I’ve kept my 2.4GHz Pentium

4 as a testing machine. I aim to keep everything running

smoothly on that, but it’s also very useful as I can see

efficiency gains more clearly on it. Using Task Manager

the CPU usage of the game might vary 20% on the old pc

and only a couple of percent on the new one.

The majority of the character’s code is fairly straight

By Alaric Holberton (Rikrok)

August 2008 MarkUp Magazine 35

T
h

e
 M

ak
in

g
 o

f…

 forward, though it may be useful to show how I got him

descending smoothly on the platforms of various speeds.

// Landing

 if (vspeed > 0) {

 if (!place_free(x,y + vspeed)) {

 move_contact(270);

 if (distance_to_object(obj_wood) <

distance_to_object(obj_metal)) {

 if (distance_to_object(obj_wood) <

distance_to_object(obj_stone)) {

vspeed = (instance_nearest(x,y,obj_wood)).vspeed}}

 if (distance_to_object(obj_metal) <

distance_to_object(obj_wood)) {

 if (distance_to_object(obj_metal) <

distance_to_object(obj_stone)) {

vspeed = (instance_nearest(x,y,obj_metal)).vspeed}}

 if (distance_to_object(obj_stone) <

distance_to_object(obj_metal)) {

 if (distance_to_object(obj_stone) <

distance_to_object(obj_wood)) {

vspeed = (instance_nearest(x,y,obj_stone)).vspeed}}

 }}

So this says if we’re going downwards and the point where

we’d be in the next frame is not free, move downwards

(direction 270) to where we hit that object, and then take

that object’s speed. We’re only interested in three objects,

and to make sure we take the right one we find which is

closest.

One other thing I’d say is that if you’re making a game that

isn’t mouse based add gamepad support. It’s simple to do

and can make such a difference, and lots of people have an

Xbox 360 controller or something similar connected to

their pc. Also for 2d games the dpad tends to be better

suited than the analogue stick, it’s faster to switch

directions as your thumb has to move a lot less.

The Blocks

While obviously there are several objects in the game,

other than the man the main ones are the blocks of metal,

wood and stone, which are all essentially the same, and an

object that deals with two arrays that tell everything what

is where. Each array is 3 by 29, 3 for the 3 columns, and 29

for the number of blocks that can stack into them. For

every frame it is checked whether a block is present in one

of those slots or not, and then the corresponding array

value is set to metal, wood, stone or nothing. The first

array only recognizes a slot being filled if the object is

stationary, i.e. the block has come to rest and it can then

be determined whether we’ve just added to our wood

stack or put something else down and need to cancel the

whole lot underneath. I’m only showing less than 1/9th of

what this “for” statement does as it gives the idea.

// Stack

 for (z=2; z<=30; z+=1) {

 // Stack accurate

 if (instance_position(265,608-(z*20),obj_wood)>0) {

 if ((instance_position(265,608-(z*20),obj_wood)).vspeed == 0) {

 if ((instance_position(265,608-(z*20),obj_wood)).hspeed == 0) {

global.ar_stacka[1,z] = 'wood'}}}

This shows in column 1 (x position 265) checking from 2 up

to 30 (1 is the floor) and y position corresponding to the

slot (each slot is 20 pixels high) firstly whether there is a

wood block, then whether that wood block is not moving

either vertically or horizontally. If all this is true then we

can set that array value to be wood.

The second array is not so fussy about whether the block is

moving or not. This is used for sending blocks into

columns at the right place. Say the stack of blocks on your

right is 20 high and you’re standing on a block lower than

that and you want to send it up to the stack on the right.

The block needs to know how high it should travel to be at

the top of that stack. If we just determined the height of

the stack using our first array there could be a block a

couple of pixels away from landing on that stack and we’d

send our block straight into it. So we have a second array

that will include blocks around the top of a stack, but that

are not necessarily motionless. The code for this is more

or less the same, except obviously there are no speed == 0

conditions and it checks at two different y positions each

By Alaric Holberton (Rikrok)

August 2008 MarkUp Magazine 36

T
h

e
 M

ak
in

g
 o

f…

 time that are 15 pixels apart from one another to cover a

larger vertical distance. Finally to deal with the unlikely

event that two blocks do settle overlapping each other;

every stationary block checks that there isn’t a block

sitting in its position with a different id. If this happens

then the block simply jumps up by 20 pixels.

There is a lot of code for each block to determine whether

its status is normal, flashing as part of a stack in a row

and/or column or needs to be deleted, so I won’t copy it all

in but instead explain the basics. Using the arrays it’s fairly

easy to tell what’s around, what ended up being more

complicated was making sure the blocks belonged to the

right group. It was not enough to set a variable for a metal

block to be flashing, and then when the block gets

cancelled out count how many were metal and flashing,

add to the score and delete them, as there may be two or

more separate stacks of metal. What I did was when a

new group was formed (three of the same types of block

were together) those blocks take a variable (in fact I used

another array outside the blocks to store these) that is

equal to the id of the third block. Any additional blocks

joining see there is a value present and take it too. This

way whenever a block in a group is touched by something

else and needs to be deleted it sets a global variable

(checkdelete) to 1 along with the group id. If any block has

that value it knows to destroy itself. The only other thing

to bear in mind was if there were two stacks connected by

having three in a row across and that row got broken new

values had to be assigned so they’d be seen as two

separate groups again.

The Tutorial

Many games will want to have a tutorial showing how to

play, and just having text is quite a boring way of doing it.

What I wanted was to also have the character perform

whatever the text was saying, it’s more interesting and

demonstrates things more clearly. It would have taken me

forever to type in where to move when, so instead I coded

things so I could record myself playing and then play that

back. In the step event of the record object I used the

following code:

 ds_grid_add(grd_record,0,global.tutorialtime,global.left);
 ds_grid_add(grd_record,1,global.tutorialtime,global.right);

 ds_grid_add(grd_record,2,global.tutorialtime,global.down);

 ds_grid_add(grd_record,3,global.tutorialtime,global.jump);

if (global.tutorialtime = 2300) {

 file_tutorial = file_text_open_write('data\tutorial');

 for (i=0; i<=2300; i+=1) {

 file_text_write_string(

file_tutorial,string(ds_grid_get(grd_record,0,i)) +

string(ds_grid_get(grd_record,1,i)) +

string(ds_grid_get(grd_record,2,i)) +

string(ds_grid_get(grd_record,3,i)));

 file_text_writeln(file_tutorial);

 }

 file_text_close(file_tutorial);

 }

So every frame a grid records a 1 or 0 for the four buttons I

could be pressing. At the end it is all written to a text file.

To play it back in the create event I have:

 grd_play = ds_grid_create(4,2300);

 file_tutorial = file_text_open_read('data\tutorial'');

 for (i=0; i<=2300; i+=1) {

 var_line = file_text_read_string(file_tutorial);

ds_grid_set(grd_play,0,i,real(string_char_at(var_line,1)));

ds_grid_set(grd_play,1,i,real(string_char_at(var_line,2)));

ds_grid_set(grd_play,2,i,real(string_char_at(var_line,3)));

ds_grid_set(grd_play,3,i,real(string_char_at(var_line,4)));

 file_text_readln(file_tutorial);

 }

 file_text_close(file_tutorial);

The code above creates a grid and puts all the values from

the text file into it. Then in the step event simply:

 global.left = ds_grid_get(grd_play,0,global.tutorialtime);

 global.right = ds_grid_get(grd_play,1,global.tutorialtime);

 global.down = ds_grid_get(grd_play,2,global.tutorialtime);

 global.jump = ds_grid_get(grd_play,3,global.tutorialtime);

Usually global.tutorialtime increases by one every

By Alaric Holberton (Rikrok)

August 2008 MarkUp Magazine 37

T
h

e
 M

ak
in

g
 o

f…

 frame, though it will pause and wait for the player to press

a button when prompted to. In the game the player’s

keyboard or gamepad’s input determines global.left

etc. but clearly this needs to be disabled during the

tutorial.

Online Scoreboards

Having this was important to me as it adds the

competitive element which makes people want to play

more. I think it’s worth mentioning because when I was

first trawling through the forums for information on how

to do it I found very little useful advice. The way I did it

was as follows:

 Get a web host that supports MySQL and php.

 Set up a MySQL database using your host’s

control panel. They should have phpMyAdmin;

use that to create your table with fields for name,

score, whatever you want, maybe timestamp and

IP address too.

 Make a php file for receiving the scores and

another one for sending them. I thought about

putting all the code in but then this article would

start to get very long. You can learn it all very

easily at w3schools.com/PHP/php_mysql_intro.asp

 Upload these files to your server. Check it’s all

working fine by pointing your web browser to the

first php file, in phpMyAdmin put some stuff in

your table and it should come up when visit the

php file. You can test your second one is uploading

ok by going to

www.yourwebsite.com/game2.php?name=”Jim”+

score=”200”.

 In Game Maker use 39dll (I originally used GMSQL,

but this is less secure as instead of using the php

files you connect directly sending the password,

it’s also a lot slower). Follow the tutorial that

shows you how to connect to a web page. Instead

of Google access your php file. In order to get your

bunch of names and scores into a useful format in

Game Maker (rather than a long string) do

something along the lines of:

setformat(sockId, 2);

while(1) {

 size = receivemessage(sockId, 6000);

 if(size > 0) {

 readsep(" ")

 for (j=0; j<=49; j+=1) {

 ds_grid_set(global.grd_scores,0,j,readsep(" "));

 ds_grid_set(global.grd_scores,1,j,readsep(" "));

 ds_grid_set(global.grd_scores,2,j,readsep(" "));

 }

 }

 else break;

}

To add some security I also wrote my own encryption for

the scores, though of course as it is written with Game

Maker if someone really wants to hack then they could.

A final note on the scoreboard; I wanted to add the

player’s country as well as name. I think it makes it more

interesting than just a list of names, to see where in the

world people are playing and players may enjoy getting

their country ranked high. It took quite a while collecting

all the flags and standardizing them but at least I can reuse

the graphics and code in other games. A script simply runs

and draws the appropriate flag for the ISO (International

Organization for Standardization) two letter country code

it’s sent. I have 221 countries out of 246 which isn’t bad,

though I was worried about causing offence for those

missed, however they tend to be very small countries and

it’s unlikely someone from there will play. Generally I

stuck to the ISO list, though I included England, Scotland,

Whales and Northern Island for those who didn’t want to

just put Britain. It also led to some interesting reading

about disputed and unrecognized states.

By Alaric Holberton (Rikrok)

http://www.w3schools.com/PHP/php_mysql_intro.asp

August 2008 MarkUp Magazine 38

T
h

e
 M

ak
in

g
 o

f…

 Graphics

I imagine most people will find what I say here of more

interest, I know I started to get bored coding all my array

checking and correct grouping. I used Autodesk’s Maya

for the majority of the graphics. It’s a massively powerful

3D modeling and animation program that’s used in films

such as Lord of the Rings and The Matrix, even Terminator

2 all those years ago, as well as of course many video

games. Amazingly Autodesk offer a free Personal

Learning edition that anyone can download which has

most of the functions of the full version, the main

limitation being that you can’t use it for commercial

projects. It’s a big program to learn but it’s also very

satisfying. The other main ‘competitor’ (though Autodesk

owns them both now) is 3D Studio Max, it just happened

that I got started with Maya and it’s what I know and like. I

got into it as I produce music, and sending CDs off to

record labels I wanted to design nice sleeves and not be

limited by Photoshop. If you’re interested in learning

Maya there are many tutorials available on the web and

it’s way too big a topic to get into, but I will give some

advice to help get started and almost instantly get some

impressive results.

 Use Mental Ray when rendering.

 The default shadows from a light are depth map,

switch it to ray tracing.

 In Mental Ray’s rendering options enable final

gathering, it simulates light bouncing off surfaces

without massive cost, your images instantly look

much more real.

 You may want to set your camera’s focal length

quite high for making graphics for 2d games, this

way you get rid of unwanted perspective.

 If you attempt to animate a humanoid the best

By Alaric Holberton (Rikrok)

advice I can give is to stand up and do

the motions yourself, usually in slow

motion. You feel ridiculous but it’s a

great way to analyze movements so

you can recreate them realistically.

Once I had rendered an image (use TIFF as it

includes the alpha layer) I would open it in

Photoshop (if you don’t have it GIMP is a

popular free alternative: www.gimp.org),

makes any changes I wanted, save as a PNG

and import in GM. Even though GM saves

images regardless of what format you import

them in using PNG makes the partially

transparent pixels maintain their correct

color, whereas with a jpg they would get

them merged with white/another color.

Unless you’re going for an eight bit look I

would always use alpha masks for smooth

http://www.gimp.org/

August 2008 MarkUp Magazine 39

T
h

e
 M

ak
in

g
 o

f…

 edges. In Photoshop just do a color overlay of white on

the layer’s blending options and add a black background,

then use sprite_set_alpha_from_sprite in GM. This gets

infinitely better results than setting a background color

then using GM’s transparency option. If your game

features a lot of graphics it may be wise to keep them as

external jpgs to reduce your file size and then use

sprite_add to load them in game. If you do this and are

using Maya make sure you uncheck ‘Premultiply’ under

Frame Buffer in Mental Ray’s options, otherwise your

partially transparent pixels will be blackened. You may

want to use an encryption dll for the external files so

people can’t easily steal your graphics.

The other piece of software I used for the mountains in the

background is Terragen 2 Technology Preview

(www.planetside.co.uk/terragen/tg2/index.shtml). Again

it’s free for non-commercial use and you can create

stunning outdoor visuals within a few minutes. It’s a very

impressive piece of software and very easy to use.

I don’t have a problem with highly saturated colors

depending on the style of the game, but don’t use too

many different colors otherwise things look a mess and

incoherent. Use parallax scrolling everywhere. If

something is at a different depth on the screen it should

move at a different speed, the further away the slower.

Finally you may or may not want to use depth of field

effects; blurring things in the distance or that are closer

than where the action is. I used it a lot in Falling Troy as it

tends to be visually impressive and stops you being

distracted by backgrounds that aren’t part of what you

interact with. It did pain me though to lose all the detail

on the Terragen mountains. Simply apply Gaussian blur in

Photoshop, varying the amount depending on the

strength of effect you want and how far away something

is. If you rendered a background with visual depth to it

and need varying blur, such as the temple in Falling Troy,

you’ll need to create a z-depth image (rendering z-depth

information into a file format that supports it tends to get

bad results, also don’t render depth of field, it takes a long

time and is horribly grainy, post processing looks much

nicer). Assign a surface shader of white to everything in

your scene then add dark fog. You get a grayscale image

where what’s lighter is closer and what’s darker is further

away. Be careful with anti aliasing because it effectively

creates false depth information, instead render at double

resolution and down scale after your DoF processing. You

then need a good depth of field plug-in for Photoshop.

Surprisingly most of them are pretty bad; the only one I

really recommend is Frischluft Lenscare.

Sound

I was in a good position for making the music and sound

effects for Falling Troy as I’ve been producing music for

quite a few years now and have a small studio’s worth of

gear. Things have changed a lot however; where once you

had to buy expensive outboard equipment for everything

now most can be done with software.

I started by searching for modern recordings of ancient

By Alaric Holberton (Rikrok)

http://www.planetside.co.uk/terragen/tg2/index.shtml

August 2008 MarkUp Magazine 40

T
h

e
 M

ak
in

g
 o

f…

Greek music to get an idea of it. Unfortunately I found

very little, and what I did hear was pretty uninspiring. I

decided to have some classical sounding strings and Greek

guitar, but basically not try and keep things authentic,

instead go for a chilled out Balearic House sound for a

sunny Mediterranean feel. It was quite different making

the music for the game as it didn’t need to have the

structure of a normal track, instead it would loop over the

course of about ten minutes, which meant I could have

lots of different stages to it, using more melodies than you

could usually get away with. The music is more like a ten

minute mini mix. I was tempted to make it longer but I

had to keep file size in mind.

In GM I didn’t use any of the inbuilt sound functions, but

instead used the Super Sound System dll by tsg1zzn

(gmc.yoyogames.com/index.php?showtopic=120034). It’s

simple to use, doesn’t have any licensing to worry about

and supports the only file format that I’m interested in-

ogg. Ogg gives significantly better sound quality than

mp3 at the same bit rate, and again it doesn’t have any

flanger etc. This is usually not a problem for me as

I can have the effect in the sound file and it will be

higher quality and not use processing power.

However where it was an issue was for the noise

when you slide down the side of a pillar or stack of

blocks. The sound file stops playing whenever you

stop sliding, but with no reverb at the end it would

sound very unnatural. What I did to get around

this was have a separate sound file which was just

a reverb tail to that sliding sound. Whenever the

sliding sound is stopped the reverb sound is

triggered. (My wall still has the scuff marks from

dragging a shoe across it to make that noise).

I won’t go into music production techniques as again it’s

too big a topic, but I will give pointers for recording voice.

 Put as much sound dampening around where you

have your microphone as possible. You generally

don’t want the voice to sound like it’s in a

bedroom. Putting up duvets and pillows and

By Alaric Holberton (Rikrok)

licensing issues that mp3 has. There

are few things to bear in mind with

SSS though:

 If you have a file over a

certain length it gives up

playing it when it reaches its

limit. I had to cut my main

music file into two.

 The volume and panning

functions are not

logarithmic, a volume of

5000 (maximum volume is

10000) should sound like

half volume, but in fact it’s

barely audible.

 It doesn’t support effects

such as reverb, delay,

gmc.yoyogames.com/index.php?showtopic=120034

August 2008 MarkUp Magazine 41

T
h

e
 M

ak
in

g
 o

f…

 whatever soft things you can find will absorb the

reflected sound so you record a dry sound lacking

in spatial information. Then you can apply the

appropriate reverb on the computer for whether

the voice is outside, in a room, cave, whatever.

Don’t have your mouth too close to the microphone

otherwise you introduce the proximity effect where the

bass frequencies are amplified.

Before applying reverb:

 Gate: removes background noise during pauses.

 EQ: get a pleasing tone to the recording

 Compress: not in the usual computer sense;

compress the dynamic range of the audio. Google

vst compressors. This is important trick for giving

audio a professional sound and can help the voice

sound clearer.

Final Thoughts

Overall I was pleased with how Falling Troy turned out. I

think I managed to do something original which is fun to

play. If I were to add more things or do a sequel:

 Bonus and bogus items such as speed boost,

bombs, blocks that can only be got rid of with

canceling of stacks beyond a certain size etc.

 Graphically I’d like to have some people in the

background supporting you; I always liked that

touch in Street Fighter 2. Also a day and night

cycle, with a man coming to light and snuff

torches on the pillars and temple. Some birds

would be nice too.

 Some kind of combination system where if you

cancel two groups within a second, you get a

multiplier. The greatest example of this and what

is in my opinion the best puzzle game of all time

(and it’s not even very well known) is Magical Drop

3 on the NeoGeo.

 The biggest addition would be a two player mode,

both cooperative and versus. The ‘versus mode’

would involve the better a player doing the more

blocks fall on the other player’s screen, along

those lines I’d also like to feature a versus

computer mode. What really held me back from

this weren’t just time constraints but the speed

limitations of Game Maker.

As much as I love Game Maker I think I’ll only have one

more game come out on it, after that I’ll be focusing on

C++. GM was never designed for overly complicated

projects but the more you learn to do the more you want

to do, until you’re limited by the program and not the

other way around. My final GM game should be

something you wouldn’t expect to see from Game Maker

though; I’ll keep progress on “Sky World” posted on

www.rikrokware.com.

■

By Alaric Holberton (Rikrok)

http://www.rikrokware.com/

August 2008 MarkUp Magazine 42

R
e

vie
w

s

Review

Lab 14 is just one of those games that will confuse you,

test your patience, diligence, skill at solving puzzles and

finally provide a way to victory, in that order. It’s kind of

like Karoshi in the fact that it gives you a starting point... A

small hint and a “you’re off on your own pal” kind of

challenge, then it’s your expectancy to find that wonderful

blinking yellow and red exit door(s, in some levels there is

more than one exit).

Lab14’s Nice-looking Title Screen

Probably the coolest part of Lab 14 is its requirement of

dexterity, and if you can keep up with its fast paced puzzle

solving, then you are the targeted audience for Lab 14.

Sure, the game was amusing for the first few levels, but if

you aren’t skillful enough to keep up with the hard game

play and no save button (for those of us that like to go

back and play a level again, without playing through the

whole game twice or more!) or for those of us that can’t

beat the game in just one sitting; then it is quite

frustrating. Another thing that added onto this bad feeling

of the game was only one background song throughout

the whole game, and no sound effects! Heck, there’s even

no way to shut this song off (excluding the mute button on

your PC, which isn’t that hard to get to since this game is

windowed)! So, it’s not like this game isn’t repetitive. The

game does deserve a bit of appraisal though, because the

game play was the best game element (like in any high

quality video game) in Lab 14 out of the other elements in

the game; which means that SuperCasey4 did a good job

in balancing the game.

This guy needs wings, a bungee cord, or just an old style “press

and hold of the right arrow key”

Some improvements to this game would be to get a save

system running, a level selector (like in Karoshi),

differentiated background music (per level), sound effects,

more game play elements, less hard puzzle solving, and

Super Casey 4’s got a good game! All in all, no one can

deny that they liked Lab 14; it’s just the fact that it’s quite

repetitive which will stiff arm non-puzzle gamers away.

See Next Page for Scores

By erthgy

G A M E R E V I E W

August 2008 MarkUp Magazine 43

R
e

vie
w

s

 The Verdict

Game play: Very repetitive, but not repetitive enough to be

considered as disappointing.

Graphics: Highest quality, he could add some more graphical

effects into the game to make it more appealing, however.

Sound: Background song gets very annoying towards the later

levels of the game.

Controls: These controls aren’t really that tough to get at all.

Replay Value: Quite bleak here, as you all ready have solved the

puzzles, and with no save and load function, it gets very

annoying.

Viscerality: Repetitive, but immersive in the beginning levels.

Overall: So Super Casey 4 has created a good game, but, with a

few core improvements he will make it a lot better.

See Next Page for Interview

>>>Scores
Ratings

Gameplay
Graphics
Sound
Controls
Replay Value
Viscerality

Grading Compared to Professional Quality. This means the game was

good enough to be compared with commercial games in the market.

Overall Score

Get it now!
yoyogames.com/games/show/30381

■

By erthgy

G A M E R E V I E W

GNET
GNET is an excellent Game Maker Extension that uses the

“GNET” DLL. The extension allows you to take advantage

of the .NET Framework in Game Maker!

The extension supports a wide range of functions that are

available in the .NET Framework; these include Math, a

better file input/output mechanism, console windows,

event logs, process and memory functions, dialog boxes,

and more!

Of course, in order to be able to use the DLL, the .NET

Framework must be installed on your computer. Note

that the GNET DLL uses the .NET Framework 2.0 rather

than the latest version, 3.5. You will therefore miss on

some of the newer features of the .NET Framework, such

as Windows Presentation Foundation, etc.

Get it now: gmc.yoyogames.com/?showtopic=286021

Q
u

ick
 R

e
vie

w

http://www.yoyogames.com/games/show/30381
http://gmc.yoyogames.com/index.php?showtopic=286021

August 2008 MarkUp Magazine 44

In
te

rvie
w

s

 Interview

What inspired you to create Lab14?

I got a lot of inspiration from Psychosomnium by cactus,

and maybe a little inspiration from Seven Minutes by

Virtanen. I had originally intended for the game to have

more of a story and be more abstract, but as I made it, I

realized that all of that was just a distraction and the game

was more fun if all you had to do was get through the

level. I got most of the ideas for the levels from just using

the computer, and some of the others from looking

through the manual for functions that could be

interesting.

Interesting, so, what was the hardest part in

making Lab 14?

Coming up with the puzzles, there really isn't any difficult

coding in the game, and it only took me about a week to

code it, but it took me much longer to come up with

interesting puzzles and clues.

Cool, so, would you say that Lab 14 relies

heavily on good room design?

I wouldn't say it relies on room design as much as making

you think outside the box. A lot of the levels could just be

an empty room with the clue in it, but in a lot of levels I

tried to trick the player by putting something in the level

that seems like the obvious way to do something, but it

really has nothing to do with beating the level.

Yeah, I did notice that as I went through it, I

don't mean to point this out to those that

didn't play the game, but once I actually found

"Press T", I was on the floor laughing from my

lack of common sense (as in, not able to solve it

so simply), lol. Anyhow, let’s get back to talking

about Lab 14. What was your favorite part in

making Lab 14?

I guess my favorite part would have to be finishing it.

Usually I like coding something that I have never done

before, but in this game there really wasn't anything like

that. I mean, I've made plenty of platform engines before,

and the graphics were pretty simple, so finishing the game

and seeing people play it was my favorite part of making

it. There's nothing more frustrating than making a game

and having no one play it, but there is also nothing better

than making a game and having people play it and enjoy

it.

Will we ever see a sequel to Lab 14 like Lab 28

or something?

Well, I have an idea for a prequel which shows how you

ended up in Lab 14, but I don't really have many ideas for

the puzzles, so it might be a while before I make it. It

probably won't be level based like Lab 14, but I don't really

want to give too much of it away.

Last question, what did you learn from the

experience, and what suggestions do you have

for others?

I guess I learned that people are a lot better at solving

puzzles than I thought (I thought people would have more

trouble figuring out some of the puzzles, but it seems like

it's fairly easy for some people) so you can expect the

sequel/prequel to be more difficult. And for suggestions

for others, just keep making good games and eventually

one will catch on, don't get discouraged. And also,

program your games at 60 frames per second; it makes

them look much smoother and more professional.

■

By erthgy

August 2008 MarkUp Magazine 45

R
e

vie
w

s

Review

I think that maybe the majority of people out there are

highly unwilling to play puzzle games. When they first

tried it, it was too hard, so they gave up. Sometimes it is

the creators fault, but not in this game. This game gives

you the perfect challenge in a simple and flat-out way that

is very hard to explain, but I will do my best.

This game’s menu truly reflects upon the game play and

friendliness of the game. It features a level editor, built in

extra levels, a “7 minutes” mode, a watch-the-blocks-stack

type mode, and a way to share levels you created with

friends who also have played the game. The idea of the

game Karoshi is to kill yourself or go suicide, (whatever

you want to call it, either way your objective stays the

same). In some levels, players will find themselves plat

forming their way onto spikes, and splashing their

character onto the wall in a bloody mess. In other levels,

players will find themselves being smashed from an object

10 times your size. Then finally my and most people’s

favorite, being killed from your own bullet’s shot.

You can see by the look in his eyes that this is no normal platformer

that copies Mario or some other original game idea.

This game just redefines puzzling as it is. Many people

thought that some levels (such as level 4, 16, 11, 28 and

the last one) to be too challenging. When I was going

through this game, I understood what those players were

saying; the game is quite repetitive at times, but it’s fast

paced advancing from level to level, and the feel of finally

conquering that level, does make up for those deficiencies.

The only advice that I can give to those players that feel as

if the game is too hard, is to go back to the level they were

stuck on, and slowly think it through. Think of the simplest

yet unobvious solution.

An easy to navigate menu gives for Replay Values

That also has to do with this next point I am about to

make, the game goes very far against gaming laws, (and it

does it absolutely correctly, too). Other puzzle games

would never have that easy-to-solve, action based, rapid

solving type feel that this game has. Another thing that

other games wouldn’t have is the sense of humor that

goes along with accomplishing a level that you were stuck

on. I laughed my head off once I found the solution to the

riddle: “There is a key to this level”. (I won’t spoil this for

you; it’s a must-see-to-believe type of accomplishment).

Another cool thing I found in this game is the way that

there are invisible walls on some levels, things disappear

and re-appear once the player flicks a switch, pushes a

block onto a button, or just plainly looks into a mirror, (this

is on purpose though, so don’t feel as if this game has

coding problems.)

Some people believe that this game has no flaws, but now

that I have explained to you some good points in the

game, let us talk about the extremely few bad points. As I

mentioned before, the game can get repetitive, (especially

if you aren’t smart and quick enough to solve some

puzzles). The sound is a bit annoying to switch once you

get into the quick thinking type puzzle solving I explained

before, as the user has to do this manually from the

game’s menu. (However, I did NOT mention before that

By erthgy

G A M E R E V I E W

August 2008 MarkUp Magazine 46

R
e

vie
w

s

this is quite simple and quickly done by just pressing the

escape key and clicking on numbers 1-3 on the bottom

right of the screen.) Lastly, the game does get a little

glitchy for me and other people with slow computers, (I’m

just saying this for 2Dcube’s sake, but he should consider

making a slower version, as many users of the GMC have

quite slow computers).

As if this snapshot doesn’t go against the gaming laws Miyamoto set

for his cult-hit “Mario”.

Ultimately this game gives everyone willing to think a fun

and experiencing feel of accomplishment, which no gamer

can deny. I just hope that other Indie game developers

don’t try to steal 2Dcube’s awesome ideas, and turn them

into a badly put together game, but, that’s for the future.

The Verdict

Game play: A little repetitive, but still awesome.

Graphics: Top-Notch, my favorite is the blood after your guy

dies.

Sound: He needs to vary these up a bit, as these do get

repetitive, but the sound is also cool.

Controls: At first, the controls were tough, but if you get used to

them you’d understand why 2Dcube made them the way he did.

Replay Value: Replaying your all ready defeated levels in the 7

Minutes game play mode is extremely fun, and adds to the

action feel of this game.

Viscerality: An Immersive experience, but it is repetitive.

Overall: Anyone should give this game a try, just be willing to try

more than once. (The only reason it SEEMS I gave this game a low

rating was because I thought deserved to be contrasted to professional

games, which means I think that this game is awesome enough to go

commercial.)

See Next Page for Interview

By erthgy

G A M E R E V I E W

>>>Scores
Ratings

Gameplay
Graphics
Sound
Controls
Replay Value
Viscerality

Grading Compared to Professional Quality. This means the game was

good enough to be compared with commercial games in the market.

Overall Score

Get it now!

yoyogames.com/games/show/32253

■

http://www.yoyogames.com/games/show/32253

August 2008 MarkUp Magazine 47

In
te

rvie
w

s

Interview

What inspired you to create Karoshi?

I'm not completely sure. It may be that I saw the game "kill

yourself in 5 minutes" which I believe is some sort of point

and click game. I never played it, but saw a blog post of it.

It may have been something else, but fact is the idea of a

game where you'd kill yourself as a goal got in my head,

and stayed there for some time until I decided to make a

plat- former out of it.

Did you have any trouble on the game, or did it

go quite smoothly?

I deliberately chose a simple type of game to make, since I

dislike programming complex systems, physics, and so on.

The thing I had the most trouble with was the electricity,

and then I used it in only one level, lol.

How long hour-wise and day wise (as in, hours

a day) did you spend on creating the game?

I'm not sure, since I started a few months ago. I had a

break where I didn't work on it for some time, and later I

did half of the levels in the week before the release.

Will you ever add more plot to the game such

as cut-scenes? Call me crazy, but I think it might

work out quite well :).

It could work, but I have no plans for that.

What are some new ideas for your

prequel/sequel coming out?

You can expect a lot more levels (in version 2.0). The

puzzles this time are less about using logic to shove crates,

and more about different solutions you'd normally not use

in a game.

What was your favorite part of creating the

game?

At some point I got in a "creative flow" of sorts, where I

made about 10 levels in a row. That's when I made the K

level and several others, and I kept working all night.

By erthgy

http://markup.gmking.org/contribute

August 2008 MarkUp Magazine 48

In
te

rvie
w

s

 What was your least-favorite (part of creating

the game)?

There wasn't a lot of frustration in making the game, but I

had a few minor problems with the electricity and the

crates' physics.

Do you think that you will ever go commercial?

Obviously you've already won the Yoyo-games

first competition...

I study game design, so yeah, I intend to go commercial.

 Do you have any suggestions for YoYo Games

as they twist and update their beta?

Add those integrated high score lists please, and I think

they should use more neutral colors for their site.

If you did go commercial, what console would

you make your game on? Or would you target

PC gamers?

I don't really mind, but I prefer playing games on a couch

and with a controller, so I guess consoles.

Who would be the Publisher of your game? Or

would you just release it online?

I have no idea as far as publishers go. I like where it's

heading with downloadable games and I think that might

be the future.

Conclusion

2Dcube gave us a few good answers on game design;

ultimately, you have to remember that game design is

simple, creative, and most importantly fun!

■

By erthgy

>>>Future Dev
XML

The software world is moving towards XML in multiple

ways. It is now becoming the primary way of data storage,

as can be seen in settings files of recent games and even

operating systems. XML is also popularly used in open

document formats such as Open Document Foundation’s

ODF format and Microsoft’s new OpenXML format as well

as their new XPS (XML Paper Specification) format that

competes with Adobe’s PDF format. Not only that, but

XML is also being used as an interface markup language as

can be seen in Mozilla’s XUL, in which applications or add-

ons like Chatzilla are almost completely made with XUL

and run with the XUL Runner or a Mozilla Framework

application. XML is becoming so popular due to its highly

structured nature and extensibility. Currently, Game

Maker only supports the inferior INI data storage

mechanism natively, and XML is done through – often

limited – external extensions, scripts, or DLLs. What Game

Maker really needs is native support for XML that allows

all GM developers to use this superior method of data

storage for game settings definitely, but maybe even for

things like level design, etc.

Eyas Sharaiha■

August 2008 MarkUp Magazine 49

R
e

vie
w

s

Review

I always love reviewing a game which hasn’t yet been

released, and this one is no exception. Although this demo

version is let down by some incomplete features and

unpolished looks, it still makes for a very good game.

Around the Lizcren community, local fans have taken well

to the latest instalment and are saying that the game is

“Looking good.” It has also been suggested that “the intro

is way too long to not allow skipping; presentation was

quite nice and the graphics were pretty good” and,

personally, I must agree. It’s no surprise that despite

certain problems the game has gone down a treat.

As I have already mentioned, the demo is not exactly fault-

free, the screen can be irritating, as it is small and quite

cluttered, the opening sequence is very long, the game

lacks a basic instructions/controls menu, I spotted some

in-game glitches (including in the masking) and the names

can be complicated for beginning players, which is not

helped by seemingly unimportant details added to the

game. But, keep in mind that this game is not yet

released, and all of these problems are liable to change.

The features of the demo succeed in outweighing the

faults, as the game has a truly original story, detailed

sprites, interesting and well-developed characters, a large

variety of different areas to explore, balanced and varying

enemy difficulties and even the ability to switch between

the characters in your party. These are just a few of the

qualities that are to be enjoyed while playing the game.

In conclusion, I’m really looking forward to seeing this as a

completed title, some slight tweaking, polishing and

mending of faults would really finish this game off in an

expert way.

By Shadow Master

G A M E R E V I E W

>>>Scores
Ratings

Gameplay
Graphics
Sound
Design
Storyline

Overall Score

Get it now!

@64digits.com

■

http://www.64digits.com/download.php?name=A_Dragon_s_Tale_-_Fires_Within_-_Vista.zip&id=24747

August 2008 MarkUp Magazine 50

R
e

vie
w

s

Reviews

What do you get when you take a game with excellent

graphics, fabulous gameplay, and a unique strategy

approach, sprinkled with many other niches? I’ll tell you.

You get an utterly deserving competition winner.

Ancient Ants Adventure pits you in against legions of

hostile creatures, such as flies, spiders and scorpions. It is

up to you to command your ants with the ultimate goal of

defending the colony.

The game begins with a brief opening message informing

you of the current situation, before you lead a small troupe

of warriors into the fray. Your team grows as you progress

through the game and rescue other ants. You will then

grow to uncover all sorts of new powers, to fit certain

positions in your formation. But it will keep you hooked for

a while before it is possible to say that you have beaten

the game, with “Divine Tasks” on each level to provide

bonus fun. Just when you think you’re finishing the

campaign is when the fun really starts!

It’s no surprise that the game has gone down a treat in the

community, being praised as an “awesome game” and

By Shadow Master

G A M E R E V I E W

Speech Dialog Extension
The Speech Dialog Extension by HaRRiKiRi forms an amazing

addition to Game Maker. The extension allows you to load

.dlg dialog files and use them for game interactions.

Such dialog files facilitate speech between characters in the

game, where you can interact with another object in the

game by choosing a statement to be said to the other

character, to which the other character replies accordingly.

Different speech decisions trigger others to start and others

to stop with the same character or even with others.

The extension allows for basic selection of speech items to be

said as well as the dialog process to be displayed. While on

the visual side the extension needs some improvement, it is

definitely beneficial, especially for those of you who would

like to make RPG or adventure games.

Get it now: gmc.yoyogames.com/?showtopic=288242

Q
u

ick
 R

e
vie

w

http://gmc.yoyogames.com/index.php?showtopic=288242

August 2008 MarkUp Magazine 51

R
e

vie
w

s

“very addictive”. One energized fan reported the game as

“Absolutely Brilliant! This has graphics that won’t look out

of place in a retail game, the gameplay is great and I would

pay for this game!”

The game introduces so many unique features, such as a

personal favorite of mine, the formation selector and even

the different modes play, those, and others it makes it

very difficult to pick out any cons here. But, to be picky

there are no evident instructions in game, which can make

the several buttons and bars on the interface seem more

bothersome than helpful. But any player would catch onto

these after less than ten minutes of play.

Conclusion

Overall, I really enjoyed playing this game, because it

captures a distinct uniqueness, and still manages to hold

some comic relief, considering you are playing the role of

an ant, in a very colorful world!

By Shadow Master

G A M E R E V I E W

>>>Scores
Ratings

Gameplay
Graphics
Sound
Design
Storyline

Overall Score

Get it now!

yoyogames.com/games/show/34591

■

http://www.yoyogames.com/games/show/34591

August 2008 MarkUp Magazine 52

M
ark

U
p

 R
ad

ar

>>>Creation

C R E A T I O N S

ZIO

ZIO is a space flight game created by rat5522. It is an

awesome, well-designed, engaging game where you

battle 14 types of enemies and an appealing graphical

environment that suits the game pretty well.

It is a fun little Geometry Wars clone, but still addictive

and well-made, so you should try it out.

The game is generally smooth and the known annoyances

have been fixed in game updates. One disappointing thing

is that ZIO uses Game Maker’s built-in dialog boxes which

might tick you off but shouldn’t harm the addictive

gameplay experience itself. Try it out.

yoyogames.com/games/show/26402

The Adventures of Cendah

The Adventures of Cendah is a Zelda-style RPG game with

spells, weapons, items, and inventory created by KingDiz.

Among the ‘features’ of the game, we have a real time

battle system, an introductory tutorial system, well-styled

RPG graphics and sound, and a generally well-made story.

The Adventures of Cendah is a cool, entertaining game,

well-received on YoYo Games and the Game Maker

Community. There are many quests in the game which

you need to solve in order to follow the gameplay to the

end. You can try this well-made game on YoYo Games.

yoyogames.com/games/show/26930

http://www.yoyogames.com/games/show/26402
http://www.yoyogames.com/games/show/26930

August 2008 MarkUp Magazine 53

M
ark

U
p

 R
ad

ar

W O R K I N P R O G R E S S

>>>WIP
World in War

World in War is an excellent war-game by Sokota and the

SkyFire team. The game features excellent combat, a

variety of vehicles, excellent graphics fitting to the

atmosphere, and great building and setting design. The

game is still in early development stages with very basic

enemy AI and little action at times. Another problem that

needs to be addressed would be the utter lack of

background music as well as the need for more sound

effects. Promising project overall, check it out!

gmc.yoyogames.com/?showtopic=369060

Pokémon Beta

The game caught my attention when I saw sunstroke’s

signature (the creator of the game) and saw “I can't

believe Pokémon graphite is getting more attention than

my game”! I set out to try the game out, and when I

downloaded it and tried it out; I came to one conclusion:

this is actually pretty good.

Pokémon Beta is graphically a GBA-style game though its

battle engine (and other portions) features a touch section

of the window, clearly a DS-style method of interactions. I

like that.

The game already

features a battle

system as well an

overworld and all of

the basic features of

a typical Pokémon

game.

Good job so far! Try it out.

gmc.yoyogames.com/?showtopic=378311

http://gmc.yoyogames.com/index.php?showtopic=369060
http://gmc.yoyogames.com/index.php?showtopic=378311

August 2008 MarkUp Magazine 54

MarkUp is an open publication made possible by the contributions of people like you; please visit markup.gmking.org for information on how

to contribute. Thank you for your support!

©2008 MarkUp, a GMking.org project, and its contributors. This work is licensed under the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. To view

a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco,

California, 94105, USA. Additionally, permission to use figures, tables and brief excerpts from this work in scientific and educational works is hereby granted, provided the source is

acknowledged. As well, any use of the material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S.

Copyright Law (17 USC, as revised by P.L. 94-553) does not require the author’s permission.

The names, trademarks, service marks, and logos appearing in this magazine are property of their respective owners, and are not to be used in any advertising or publicity, or

otherwise to indicate sponsorship of or affiliation with any product or service. While the information contained in this magazine has been compiled from sources believed to be

reliable, GMking.org makes no guarantee as to, and assumes no responsibility for, the correctness, sufficiency, or completeness of such information or recommendations.

And that’s Issue 14 of MarkUp Magazine! We hope you enjoyed reading it; we sure did enjoy making it! We took a

break and were away for a couple of months but we hope you agree that we have returned with an excellent, versatile,

and content-packed issue that made it worth the long wait!

In this issue, we return with the “The Making of…” articles, giving you a very comprehensive look on the game

development process, we also returned to the old pace and type of technical content we used to serve that made our

readers love us to begin with, and have emphasized – by popular demand – our reviews and interviews section in the

magazine. We also have a much improved graphical feel overall with our designer. While Suhaib has worked on a

couple of issues previously, we only just agreed on the proper feel/style to use for MarkUp Magazine in this issue,

which is why you’ll see the amazing cover and inner-issue (headings, etc.) graphical work that he has done for us.

Some might not like the color scheme for this issue; red is bold after all, but the color scheme will be continuously

updated as well as the graphics art in general for the upcoming issues.

MarkUp Magazine is made, maintained, and supported by people like you! So, if you like us, make sure you support us

in a multitude of ways; you can contribute to MarkUp Magazine and submit content such as tutorials or editorials that

you have written, or you can apply to staff and become a fulltime writer to the magazine. Please share all your

opinions and feedback regarding this issue, MarkUp Magazine in general, and anything else on our GMC topic or

contact us by mail! Thanks a lot for supporting MarkUp Magazine and making it what it is today!

The MarkUp Staff■■

GMking.org is the parent network for MarkUp Magazine. It is constructed as to behave like a centralized portal that

links to the four main aspects of GMking.org’s projects: The GMking.org Site [which is now a sub-site of the main

gmking.org page], The GMking.org forums, GMpedia.org, and MarkUp magazines. Visit the site for MarkUp’s entire

set of sister projects! Also check out GMpedia.org, a sister project of MarkUp Magazine: a comprehensive wiki and

encyclopedia for game developers.

http://markup.gmking.org/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://markup.gmking.org/contribute
http://markup.gmking.org/node/add/application
http://gmc.yoyogames.com/index.php?showtopic=288147
mailto:staff@gmking.org
http://gmking.org/
http://gmpedia.org/

