

Interviews Resources Previews Reviews Tutorials

MMMaaarrrtttiiinnn CCCrrrooowwwnnnooovvveeerrr:::

MMMuuullltttiiippplllaaayyyeeerrr GGGaaammmeeesss

AAArrrrrraaayyysss &&& LLLiiissstttsss

AAAmmmmmmuuunnniiitttiiiooonnn

CCCllleeevvveeerrr AAAIII

IIInnnssstttaaannnttt CCCooolllllliiisssiiiooonnnsss

RRReeegggiiissstttrrryyy

PPPllluuusss………

AAAnnnddd MMMuuuccchhh MMMooorrreee!!!

2 | P a g e July, 2007 http://markup.gmking.org

ED
ITO

R
IA

LS

Teamwork Pt. 2

Welcome to Issue 5 of MarkUp, the only

active GM magazine officially endorsed

by YoYo Games 

Continuing from last month’s discussion

on last month’s discussion on how to

most effectively have a game

development team (the concepts will

work with most any team however) we

go on to.....

Sharing work
When you are working in a geologically

separated team, you need an efficient

way to store and distribute work, and to

list who will work on what.

Email can help with this to an extent,

but there are a lot of good (and free)

tools out there that can make the

process a lot easier.

Basecamp
http://www.basecamphq.com/

Basecamp is probably the most well

known online collaboration tool. It lets

you manage “projects” (the free version

allows only one project, with unlimited

participants), with events, deadlines and

issues. It works like a specialized forum,

allowing team members to track every

detail of the project.

The free plan allows only one project,

has no on-site file storage, and doesn’t

use SSL. You can get premium versions

with more features starting at

$12/month.

Google Docs & Spreadsheets
http://docs.google.com

Google’s collaborative office tools let

multiple people work on documents

simultaneously. Perfect for working on

team plans and the like.

SVN
SVN is the ultimate way to keep source

code files synchronized between

members of a team; it can work for just

one person (to keep play-by-play

backups) or for 10,000 people.

Best of all, you can get SVN hosting for

free. Two popular sites to get said

hosting are assembla.com and

unfuddle.com.

See you next month!

Robin Monks 

Contributors This Issue

Robin Monks Sr. Editor

Eyas Sharaiha Editor

Jason Stockton Writer

Phil Gamble Writer

Gregory Writer

mr.gibblet Writer

Bart Teunis Writer

Michael Sharaiha Writer

Sean Flanagan Writer

Table of Contents

Editorials

Teamwork - Part 2 2
The MMORPG Makers 5
3D vs. 2D Games 10

Tutorials

Arrays vs. Lists 4
AI: A Clever Opponent 6
File Search Functions 9
Ammo .. 15
Game Maker and the Registry 21
Instant Collisions 23

Reviews

Seiklus (17) 11
Arena ... 13
Coaster Rider 27
2P Shooter 28

Resources

GMR Featured Resources 3
Dev Tools - Dragon Script 7
Script of the Month 8

Interview of the Month

Martin “FredFredrickson” Crownover ... 18

MarkUp is a gmking.org publication;

please visit GMking for more free game

development resources!

EDITORIALS

Photo © Freddy Thorvaldsen





http://www.basecamphq.com/
http://docs.google.com/
assembla.com
http://unfuddle.com/
http://gmking.org/

http://markup.gmking.org July, 2007 3 | P a g e

ED
ITO

R
IA

LS

One of the easiest ways to improve your

knowledge of Game Maker and discover

new possibilities is to use examples.

Examples are a great way to include

extra features in your game or to

discover new ways of creating things.

This month I am looking at some of the

great places to find the examples you

need.

GM Tutorials
http://gmtutorials.com/

Know what you’re looking for? GM

Tutorials has a group of creators who

constantly add to the list of examples on

the site. There are currently over 200

examples and tutorials ranging from RTS

examples to fog or even a scroll bar

example. Just go to the site and have a

look.

The tutorials are handier for novices as

they provide a bit of a walk through to

go with any examples that they may

include with the tutorial.

Simon Donkers
http://xrl.us/simondonkers

So what if you want complete game

examples? Check Simon Donkers out.

His site has a complete collection of full

working game examples created in

GM5 and 6 including breakout, snake,

Pacman and more. There are also a few

examples that aren’t full game

examples there as well.

GM Resources
http://xrl.us/gmres

No it’s not the GM Resource, its GM

Resources; the key difference being the

plural on the end… Although this site

doesn’t have truck loads of examples it

is slowly growing as it’s a user based

submission site that has many user

submitted examples; many of those

being 3D examples.

As the site is user submission based

some examples may be lower quality

than others so check any feedback

before downloading (if the example has

been reviewed or rated).

Conclusion
Still can’t find what you want?

GameMakerResource.com has links to

plenty of other Game Maker sites with

examples for you to download; so if you

can’t find what you want here, jump on

there and browse the rest of the sites in

our listing.

Remember as with all resources to give

credit where credit is due. Creators

deserve credit for their time and effort.

Jason Stockton,

GameMakerResource.com 

EDITORIALS GMR Featured Resources

Tinyweb

QUICK REVIEW

The tinyweb DLL is a web

browser DLL that allows you to

embed either local .html

documents in your game, on

even better, allow your game to

open certain sites within. There

are other browser DLLs out

there, but this one is tiny, easy

to use, and comes as an

extension, library, and a bunch

of scripts as well. The source is

also included.

Get it now!
http://xrl.us/tinyweb Q

U
IC

K
 R

EV
IE

W

http://gmtutorials.com/
http://gmtutorials.com/
http://xrl.us/simondonkers
http://xrl.us/simondonkers
http://xrl.us/gmres
http://gamemakerresource.com/
http://gamemakerresource.com
http://xrl.us/tinyweb

4 | P a g e July, 2007 http://markup.gmking.org

TU
TO

R
IA

LS

Arrays vs. Lists

The concept of arrays is basic and

familiar to the majority of the

programming languages out there. An

array is a variable that is capable of

storing multiple values, according to its

index – which could be 1-dimensional or

2-dimensional in Game Maker.

However, Game Maker contains an

excellent data structure – lists. A list is

always 1-dimensional, and contains

different values (sorted or not). Many

other data structures exist in Game

Maker, such as stacks and queues. What

makes lists special is that it has direct-

access, as opposed to their sequential

access.

It might be easy to establish how arrays

differ from regular variables, and how

lists differ from other data structures.

But the real question is: when to use

lists, and when to use arrays – and

which is better?

Understanding the differences
To be able to wisely choose which

method to use for a particular case, the

differences between lists and arrays

must be established.

First, a clear advantage of arrays over

lists is ability of using 2-dimensional

arrays to form ‘tables’. Lists particularly

fail at this, and storing multiple

variables in a “row” might lead to the

need for string manipulations, or other

tricks.

The use of CSV files to store data has

been covered in the previous issue of

MarkUp, and such an application is

better implemented with arrays.

However, lists have their own

advantages as well. First of all –

according to Mark – handling lists is

much faster and resource-friendly than

arrays. So if you care about speed, lists

have a good advantage. Not only that,

but lists also can have data inserted to

them in the middle, added to the end,

sorted and re-sorted at any time, and

more. Lists just fascinate me!

The major disadvantage of lists is that

they are not saved with the game! So if

you’re game utilizes save/load, you’ll

either have to make your own save

mechanism (like I did for one of my

projects), or just make a script that

loads the list after loading the game.

On the upside, though, Game Maker

already provides reading and writing

functions for lists, so you can easily save

scripts to files and load them.

Where lists shine
I’ve mentioned the good points of lists

in short before, but here’s some info

about what’s really great about lists:

Copying Lists

A list could be copied from one id to

another. This could hardly be achieved

by arrays – but with lists, it only requires

a single quick function. Copying a list is

more useful than it seems, but its

applications depend on the way you’re

using the lists in the first place.

For example, a list could be used to

store multiple copies with multiple

arrangements. Such an application

allows a host of things to be done,

including simple procedures such as

finding the mode of values.

A more specific example is something

like a “soccer tournament”. We see in

all FIFA games how teams are drawn up

– such that teams in the quarterfinals,

semi-finals, and finals are all displayed.

This could be also done by copying a list

of participants to other lists, and

removing unqualified teams.

Another application is the use of

“indexing”, so that a long list is copied

to different smaller lists, and all the list

items except for those starting from a

particular letter are removed. This

results in having smaller lists, each

having values starting with a single

letter. When those are further sorted,

they could be used in an index-like

atmosphere, such as a dictionary.

Getting List Size

When using arrays, we almost always

have to include another variable that

acts as a “counter”, so that the game

only performs certain operations on the

number of items that are there in an

array. A list eliminates the need for such

variable.

Easy Insertion of Values

Easy insertion of values to scripts is one

of the things I LOVE about them! To

properly insert a variable in an array, a

loop should be performed to move all

items occurring on or after the point of

insertion one further step. This is all

done automatically with lists, and not

only that, but also much faster (in terms

of execution speed).

Easy Removal of Values

Once a value is deleted from a list, all

values fix their positions. Basically, it is

the reverse of “Easy Insertion of

Values”, something that also isn’t

natively available for arrays.

Searching Capabilities

The searching capabilities for lists are



TUTORIALS

http://markup.gmking.org July, 2007 5 | P a g e

TU
TO

R
IA

LS

Arrays vs. Lists Cont.

extremely useful. You can find the value

of a list row from its position, or get that

list’s ID by writing its value. Both give

great possibilities, especially when used

in conjunction with other list functions,

such as sorting. You can find the nth

nearest instance from a particular

object, etc.

Sorting

One of my favorites! You can sort all

values in a script either ascending or

descending. This also works for both

numbers and text pretty well. This is

pretty useful when using the list data

structure to draw and actual list on the

screen, which could become long.

Shuffling!

I’m in LOVE with shuffling. It has so

many uses, ranging from the obvious

“cards” to the AI for strategy games, or

the order of events in a timeline for

another.

Where Arrays Shine

Tables

Thought variable[4] arrays could be

useful, something I really like about

arrays is the use of two-dimensional

arrays, like this variable[6,3], to locate

a value’s position both on x and y. The

use of two-dimensional arrays as tables

is very interesting but will not be

discussed in any further detail in this

article.

Changing Values

Changing the fourth row of the array

“variable” from 5 to 6 is pretty simple in

arrays. A simple line of code:

variable[4]=6;

But in lists, a ds_list_replace function

needs to be called, and the position of

the row needs to be known (since with

insertion and sorting, it’s constantly

changing) using yet another

ds_list_find_index function. So it could

be pretty painful at times.

Conclusion
Though lists could be used for

everything, and arrays could be used for

everything – some things are better

handled by one mechanism than the

other. Everything could be achieved, but

when the results are the same, you

might have to consider what is easier

and quicker to write, and which is faster

to execute.

Eyas Sharaiha 

TUTORIALS

The MMORPG Makers
EDITORIALS

I’m not sure if I missed something when

I joined the GMC. I think there were a

set of rules for new members which I

somehow didn’t find. It’s a great shame

I haven’t found them really. At least

then I might be able to understand the

more chaotic of people’s decisions.

In almost every board on the GMC, it is

possible to find a topic by someone

wanting to create an MMORPG. This

person usually would have joined in the

last few weeks, or has been around for

at least a year and a half. There’s rarely

someone in between those times.

The new members will be really

enthusiastic about their project,

expecting to have a game better than

big names like RuneScape by the end of

the week. The more experienced users

will be coyer about their plan and then

either decide not to follow it through or

disappear for a few weeks as they work

on a starting demo.

The truth is that creating a MMORPG

takes an awful lot of work. You need to

set up servers, understand all the online

functions inside out and also create

something that’s actually worth playing.

Nobody wants to look at their player

standing in a room and not being able to

move them.

I tried to make a MMO once. It was

going to be a platform game where the

user could design their character and

then use it to explore the online world.

When I got to making it multiplayer…it

fell apart (though if anyone is

interested in reviving it, contact me).

The truth was, of course, that I knew

nothing near enough about creating

multiplayer games and I just wasn’t

up to it.

What I’m trying to say, I suppose, is

that you have to know your

limitations. Although you should

always try and do your best, and

make a game as well as you can, you

shouldn’t try and do something that

you’re incapable of. It just doesn’t

follow. Having said that, if you can

do, you should go for it.

Gregory 

http://gmc.yoyogames.com

6 | P a g e July, 2007 http://markup.gmking.org

TU
TO

R
IA

LS

AI: A Clever Opponent

The burden of creating artificial

intelligence is that it is so hard to

program. Professional developers can

take months or even years just figuring

out AI for a single enemy. Luckily, Game

Maker comes with a feature that can

help this problem, which is motion

planning.

Motion planning is a simple yet effective

way of doing ‘search’ AI. In this tutorial,

you can learn how to make your own

search AI and have an enemy chase

after you. More information is provided

in the GM Manual > GML > Gameplay >

Motion Planning. This tutorial is for

creating a basic. More can be done,

though.

The first thing you need to do is set up a

grid the MP will be worked out on. This

is simple, and can be done with one

function.

In the create event of your enemy, type:

{

mp_grid_create(left,top,hcells,

 vcells,cellwidth,cellheight);

}

Now, to set this up, we first have to

specify the left and top of the room.

This is obviously 0, 0. That part is easy.

Next, we have to decide how many cells

go horizontally. To do this, we must first

figure out the width and height of our

squares. You will usually want either

16x16 or 32x32. Let’s say we’re making

a game where the AI searches on 16x16

squares. So, the cell width is 16, and the

height is the same. Now, we can get

back to figuring out how many should

go horizontally and vertically. Note that

in order for this to work, the room

width and height must be a power of

the width and height. So, for hcells and

vcells, we instead type this finished

piece of code:

{

mp_grid_create(0,0,room_width/16,

 room_height/16,16,16);

}

That creates our grid. But we want to be

able to refer to it. So, we change it into:

{

grid_id = mp_grid_create(0,0,

 room_width/16,room_height/16,16

 ,16);

}

Now, we can refer to the grid by using

the variable grid_id.

Well, we have created a grid, but that

does not mean it does anything. It just

sits there, soaking up your RAM and

CPU process. So, now we have to make

it do something.

Let’s say that we have an object,

obj_block, that we want our enemy to

go around and try to catch the player.

Here, we use the following piece of

code:

{

mp_grid_add_instances(id,

 object,prec);

}

Let me explain this. The MP grid works

on spaces that are available and

unavailable. So, to make our enemy go

around the unavailable spaces, we want

to set obj_block as unavailable. We can

also add the grid id, which we defined

inside of grid_id. Prec is short for

precision. You should usually switch

precision on to create a better effect. So

now, we can modify our code to this:

{

mp_grid_add_instances(grid_id,obj

_block,true);

}

Put this code in the create event, too.

And there we go. Now we have our grid

all set up and ready, so the last thing we

do is make the enemy follow the path.

Path? Did someone say path? Oh, that’s

right. Before you go on, make a

completely empty path with nothing in

it. Call it pth_move. This may sound

funny to you, but you’ll understand.

Now, here is the big finale. In the step

event of the enemy, put the following:

{

mp_grid_path(grid_id,pth_move,x,y

,obj_player.x,obj_player.y,true);

path_start(pth_move,1,0,false);

}

I’ll tell you what this does.

mp_grid_path sets the path we selected

(pth_move) and edits it so that it

becomes a path between the starting

point (3rd and 4th argument, enemy x

and y) to the goal (5th and 6th argument,

obj_player.x and obj_player.y), it sets

the grid that we put this path on,

(grid_id), and finally, the 7th argument,

allows diagonal paths (if you want

straight lines, set this to false.)

The next piece of code simply starts the

path. It starts pth_move at a speed of 1

(this can be changed.) Warning: DO NOT

CHANGE THE LAST TWO ARGUMENTS.

This will make the path be un-relative

and try to loop. You DO NOT want this!

Well, that’s it, a guide to using search

AI. This article only covers the basic

functions, but you can look in The GM

Manual > GML > Gameplay > Motion

Planning for more information. I hope

this guide will be of use to you as you

progress in your AI career.

Sean Flanagan 

TUTORIALS

http://markup.gmking.org July, 2007 7 | P a g e

D
EV

 TO
O

LS

Dragon Script vs. GM Editor

When it comes to coding, I’m very

simplistic. I make websites using only

Microsoft’s Notepad and would happily

code GML in that as well. So you can

imagine how I felt when I took my first

look at Dragon Script recently.

The only difference I find between

Notepad and the built-in GML editor

(below) is that the latter has colour

coding and a quick reference at the

bottom. This suits me very well – both

of those features are really useful when

coding. They help me to lay out my

screen and remind me of all the

arguments I need to know.

I think the thing which I really love

about the built-in GML editor is its

simplicity: it’s very, very basic. Which is

wonderful. There’s nothing around to

distract you, nothing there which you

suddenly feel you should be using.

Dragon Script is very different. Its

interface is covered in buttons,

textboxes and drop-down boxes, all

showing tools which could potentially

be useful at some point but which seem

to get in the way when you’re trying to

code. Although the main typing window

is quite obvious, it is a bit overwhelming

and difficult to figure out where to start.

I notice too, that Dragon Script seems

very separate to GM. It seems like a

completely separate program.

Admittedly, it is, but the built-in editor

feels like it’s part of GM itself, whereas

DS feels external, in the same way that

using word to edit GML files would.

I think my real distrust stems from two

things: Primarily, I’m not used to it so

I’m wary and a bit confused. I want my

old editor back. Secondly, the colour

scheme is different. This may sound

really picky but it’s something I can’t

help but noticing. I’m extremely used to

seeing my variables show up in light

blue and constants in brown but here,

that isn’t the case. Fortunately the

colour system, as in Game Maker, is

fully customisable.

But I can’t really spend this whole article

saying that the built-in editor is better

than Dragon Script because I would be

prejudice and very unfair. Dragon Script

has some great features which make

coding so much easier. The auto-

complete feature works similarly to the

prompt at the bottom of the GML editor

but also tells you what each prompt

actually is (functions, constant,

variable), which can be a great thing for

new users of Game Maker Language

who are not entirely sure what

everything does.

The other main special feature of

Dragon Script for me is the Function

Look-up which, surprisingly enough

looks up functions. It gives a description

of what the function does, explains it

arguments and links you to the relevant

article in the Game Maker help files.

In conclusion, I think Dragon Script is

very useful tool for people new to Game

Maker Language. It has lots of tools to

explain functions and keep everything

on hand. However, I think more

experienced users would find the built-

in editor better as they don’t need the

fancy look-up tools but instead just a

plain window to quickly edit their codes.

Switching to Dragon Script
First, select the “Scripts and Codes” tab

in the Game Maker Preferences:

Select to “Use external code editor” and

then enter the path for the Dragon Script

exe:

You can click on the “…” button to find

the program in your files:

Gregory 

DEV TOOLS

8 | P a g e July, 2007 http://markup.gmking.org

SC
R

IP
TS

Script of the Month

Our favourite GML script resource – GMLscripts.com – has done

it again, releasing over 100 GML scripts! One of the scripts that

have really appealed to me is called sprite_edit_begin which

initiates the editing of a sprite by taking advantage of a feature

introduced in Game Maker 6.1: Surfaces.

Script #1: sprite_edit_begin
/*

** Usage:

** session = sprite_edit_begin(sprite)

**

** Arguments:

** sprite sprite to edit

**

** Returns:

** session an editing session ID

**

** Notes:

** Begins a sprite editing session. All draw commands are

directed to a

** surface holding the a horizontal strip of each of the

frames in the

** given sprite. When finished editing, call function

sprite_edit_end()

** to implement the sprite changes and to reset the drawing

surface.

** Resets blending mode to normal.

**

** Dependencies:

** sprite_edit_end()

**

** GMLscripts.com

*/
{

 var sprite,a,w,h,n,xoff,yoff,surface,i;

 sprite = argument0;

 a = draw_get_alpha();

 w = sprite_get_width(sprite);

 h = sprite_get_height(sprite);

 n = sprite_get_number(sprite);

 xoff = sprite_get_xoffset(sprite);

 yoff = sprite_get_yoffset(sprite);

 surface = surface_create(w*n,h);

 surface_set_target(surface);

 draw_clear(c_black);

 draw_set_blend_mode_ext(bm_one,bm_zero);

 draw_set_alpha(1);

 for(i=0; i<n; i+=1) {

 draw_sprite(sprite,i,i*w+xoff,yoff);

 }

 draw_set_blend_mode(bm_normal);

 draw_set_alpha(a);

 return (string(surface)+':'+string(sprite));

}

Script #2: sprite_edit_end
/*

** Usage:

** sprite_edit_end(session)

**

** Arguments:

** session the editing session ID provided by

sprite_edit_begin()

**

** Returns:

** nothing

**

** Notes:

** Ends the editing session started with

sprite_edit_begin, replacing

** the old sprite with the edited sprite and freeing the

editing surface.

**

** Dependencies:

** sprite_edit_begin()

**

** GMLscripts.com

*/
{

 var session, p, surface, sprite, w, h, n, prec, tran,

smth, load, xoff, yoff, temp, i;

 session = argument0

 p = string_pos(':',session);

 surface = real(string_copy(session,1,p-1));

 sprite = real(string_copy(session,p+1,10));

 w = sprite_get_width(sprite);

 h = sprite_get_height(sprite);

 n = sprite_get_number(sprite);

 prec = sprite_get_precise(sprite);

 tran = sprite_get_transparent(sprite);

 smth = sprite_get_smooth(sprite);

 load = sprite_get_preload(sprite);

 xoff = sprite_get_xoffset(sprite);

 yoff = sprite_get_yoffset(sprite);

 temp =

sprite_create_from_surface(surface,0,0,w,h,prec,tran,smth,load

,xoff,yoff);

 for(i=1; i<n; i+=1) {

sprite_add_from_surface(temp,surface,w*i,0,w,h);

 }

 sprite_assign(sprite,temp);

 sprite_delete(temp);

 surface_reset_target();

 surface_free(surface);

}

Use
Using this set of scripts is simple – all you have to do is begin

with a sprite_edit_begin() script call, start using draw

features in the same event and then save the sprite by

calling the sprite_edit_end() script.

Such a procedure doesn’t have to be put in the draw event,

since after it is complete one time, the sprite will be saved

like that, and could be used at any time.

Eyas Sharaiha 

SCRIPTS
Powered by:

GMLscripts.com

http://www.gmlscripts.com/

http://markup.gmking.org July, 2007 9 | P a g e

TU
TO

R
IA

LS

File Search Functions

File Search functions in Game Maker

have a multitude of uses, and are crucial

to several types of games. Compared to

other functions, it is hard to make up

creative uses for file search functions,

since what they do is pretty straight

forward – find files.

The Basics
Though many people think of file search

as a limited mechanism to find a single

file, it actually is capable of finding

multiple files under the same

conditions. To start finding files, the

file_find_first() function is used.

After that function, file_find_next()

functions could be used to find the next

file under the same conditions as those

outlined in the first command.

To close the ‘thread’ of file-finding, a

simple file_find_close() function is

used. After such functions, “find next”

functions cannot be used anymore.

Order of File Finding
Obviously, if multiple file possibilities

existed for a search conditions, multiple

files need to be returned. Also a well

known fact is that Game Maker doesn’t

return multiple values – so only a single

value will be returned for the first file

finding function. Other files will be

returned in the find next function.

The order of how the values are

returned is ascending, so a file called

“armor.csv” will be returned before

“bike.ogg”.

Arguments
The file_find_first() function

requires two arguments: the mask and

the attributions. While the find next

function has no arguments, as it relies

on the find first command.

The Mask
The mask for a file is a string that should

match with both the name and location

of the file to be found. The mask could

include wildchars (*) which basically

means any character or a group of

characters.

So, using “*” as the mask would result in

having all files being returned. Using a

“*.txt” would return all text files in that

given directory. Using “hello_*.gmk”

would result in returning all folders that

have the gmk extension and begin with

“hello_”.

The Attributes
The attributes argument is a (collection)

of real-valued variables that could be

added up together using regular

addition “+” in Game Maker. For no

attributes, the real value 0 is used. Here

is a set of variables to be used with the

attributes in the table below.

TUTORIALS

Variable Description

fa_readonly A read only file

fa_hidden A hidden file

fa_sysfile A system file

fa_directory A directory

fa_volumeid A volume-id file(which represents the
volume of a drive)

fa_archive An archived file

MIDI Notes

To return files that are read-only,

hidden, and system files, (fa_readonly

+ fa_hidden + fa_systemfile) is used.

Returned Values
If such a file exists, only the name of the

file will be returned. This means that the

path (location) of the file will not be

returned, however, the file extension

will be part of the name returned.

 QUICK REVIEW

This small DLL allows anyone to

play any note on any MIDI

instrument. You could either

choose the notes and

instruments to play, or simply

play an entire MIDI file. The

DLL comes with two examples,

both GM6.

Get it now!
http://xrl.us/MIDINotes Q

U
IC

K
 R

EV
IE

W

http://xrl.us/MIDINotes

10 | P a g e July, 2007 http://markup.gmking.org

File Search Functions Cont.

If the file being searched for does not

exist, an empty string (“”) will be

returned. This could be used to count

the number of files satisfying a certain

set of conditions by using a simple while

loop that adds 1 to a counter each time

file_find_next()!="".

Applications

Copying All Folder Content
//Script: move_folder()

//move_folder(string folder1, string

//folder 2);

//Folders must not include final

//backslash courtesy of Eyas Sharaiha,

//featured on MarkUp

f1=string(argument0);

f2=string(argument1);

file=file_find_first(f1+"*",0);

while(file!="")

{

 file_copy(f1+"\"+string(file),

f2+"\"+string(filename_name(file)));

 file_delete(f1+"\"+string(file));

 file=file_find_next();

}

file_find_close();

Counting files in a folder
//Script: count_folder()

//count_folder(string folder);

//Folder must not include final backslash

F0=string(argument0);

i=0;

file=file_find_first(F0+"*",0);

while(file!="")

{

 i+=1;

 file=file_find_next();

}

file_find_close();

Conclusion
While finding folders might not have

that many “different” uses – these uses

TU
TO

R
IA

LS

still find their ways to multiple games,

both with Game Maker on the GMC and

other commercial games as well.

Finding files could be useful in multiple

ways – either when searching for a

particular file in multiple destinations,

or even searching for a file which’s exact

name is not known. File finding

functions could be used to create folder

operations, or just as a method of

storing settings, counting files, etc.

One good example I can now think of is

counting the number of .sav files in a

directory so that a game could display

the names of all saved games in a

certain directory.

All in all, the possibilities are endless!

Eyas Sharaiha 

TUTORIALS

3D vs. 2D Games

The comparison between 2D and 3D

games is, to most, striking. Whilst 3D

games give you a sense of depth and

three vertices to play with, 2D can only

attempt to give a real-world feel…and

tends to fail.

But why is it that 3D games are more

popular to gamers of today? Looking at

the top video game sales at Tesco’s

earlier this morning, only one of the

twenty shown did not have a 3D

environment. But said game was

interface based and so was barely 2D

either.

The main gaming difference between

2D and 3D is, in my eyes at least, is what

you can do with each one. 3D provides a

very extendible, multi-dimensional

situation whilst 2D is preferred for

simple, smaller games.

The third dimension allows producers of

games to make various different

extensions to simpler 2D gameplay. A

first-person-shooter can give the player

the opportunity to hide behind walls or

above their opposition; something

which 2D top-down games cannot offer

so easily. In racing games too, the third

dimension can give a z-axis, letting cars

go off ramps, or really fly in collisions.

That isn't to say that 3D is the best

arrangement to use though. Simple

arcade or puzzle games work perfectly

in 2D. There is absolutely no reason why

someone would need to make a

Pacman or space invaders game in

3D. If anything, this would take away

the fun of it – the original, traditional

gameplay element.

It is the extendibility of 3D games

that make them so popular to the

gaming audience. It's not often that a

2D game is made that has a great

storyline and complex and dynamic

gameplay. With 3D, that's a breeze.

Thus, you can make a simple mini-

game in 2D very successfully but, if

you want to make something really

vibrant and exciting, 3D is what

should be used.

Gregory 

EDITORIALS

http://markup.gmking.org July, 2007 11 | P a g e

Seiklus (17)

Where do I begin? Well maybe because

this game is somewhat confusing,

because this game has too many good

and bad points that it is difficult to talk

about but I’ll do it anyway.

It is very addictive, well until you finish

the game then you just throw it away,

not that that’s a bad thing because this

is the case with every short term

addictive game, and it’s just a personal

choice of the author.

Game play
A simple addictive game, I do think that

after playing it I won’t really play it

again. But none the less it did achieve

addictively even though short term, you

know it’s one of those games you have

to play because it is worth it, but it all

comes down to, I think, whether you

want to play it again, and in this

category it failed remarkably.

Also there are some aspects of the

game that you don’t know why they are

there for, like the Piano – what is it for?

Obviously you have to play a tune but

there is no indication of that anywhere.

Something should indicate that, as I said

there are many aspects of the game

that remain as I see vague and

unanswered.

Controls
The simple up, down, left, right arrow

R
EV

IEW
S

keys technique, it never gets old, easy

to use and above all everybody is used

to it.

10/10 now really how can it get any

other score, tell me?

Presentation
“Press ‘s’”, that is how the welcome

screen is, then “press ‘1’ ‘2’ ‘3’” to chose

which of the three saves to continue,

but is this really what you call nice,

cause sure it is boring and lacks

stimulus.

There is no indication about buttons, I

replayed parts of the game once too

many times over and over again

because I did not know what it was, by

the way it is “S”.

Story line
The story begins by the player being

blasted off a mountain away from his

girlfriend/sister/wife, and then nothing

gives indication of what is your main

objectives, well at least until you get to

the lights near the cave exit.

The story is, I don’t know how to say

this, short, ok the areas are not very

predictable but there is no indication of

the story other than in the beginning.

Graphics
Game graphics are those of platform

games can’t really judge them because

that is how old school games should

look, I do not think platform games have

reached their full graphics potential, but

that is no one’s fault as much as those

commercial developers, they got us



REVIEWS

12 | P a g e July, 2007 http://markup.gmking.org

Seiklus (17) Cont.

used to the idea that platform games

should look like this.

Only problem is the shape of the

character he could have been done

better i.e. not just a white, more than

cartoonish ghost like man, try putting

on some cloths on him.

Music
Turn off your speakers and on with your

headphones! How could anyone stand

that much repetition, but on there

“plus” side there are silent areas were

you get no music, so I urge you if you

are playing this game put on your own

playlists on your music player, the music

at first is stimulating but after a few

minutes of game play it starts to get

annoying.

Sound effects
Well, there are very few sound effects in

the game but they are generally ok, the

game does need more especially during

movement, walking of jumping not just

when being kidnapped, taking the

colored fire things, or playing the giant

piano.

R
EV

IEW
S

Conclusion
The game is addictive yes, but it gets

boring after a while, in my opinion the

game achieves greatness if the player

wishes to play it more than once which

this one has failed miserably.

It all starts here,

Michael Sharaiha 

REVIEWS

Conclusion

0

2

4

6

8

10
Game Play

Controls

Presentation

Story line

Graphics

Music

Sound FX

Overall

RatingsPros: Enjoyable theme,

gameplay, and overall feel.

Cons: Unpleasant to the

eyes and ears.

Download Size: 2.6MB

Download Type: Game .zip

Author: clysm, autofish.net

Released: 8/15/03

Get it Now:

http://xrl.us/seiklus

http://www.autofish.net/
http://xrl.us/seiklus

http://markup.gmking.org July, 2007 13 | P a g e

Arena

What they say
Arena is the two-player game where

opponents battle within the confines of

a random maze. With lots of options

and multiple paths to victory, Arena is

never the same game twice. This is a

great rivalry game where two good

friends can sit down and blast away at

each other. This is my first original video

game.

Review
Arena lives upto and exceeds my

expectations. I first downloaded this

game in 2003 and I am still playing it

today. Games which have two players'

controls contained within a single

keyboard often spell disaster, however

in Arena there are no key clashes, or

awkward reaching across your

opponent to the other side of the

keyboard. With a vast array of in game

customisation available and Arena's

amazing random maze generator, each

game really is different.

It is possible to win within seconds or

games can last 20, 30 minutes or more -

it all depends on how you choose to set

up the game and your starting position

in relation to sentries, bases, powerups

and your opponent.

A key aspect of the game is

customisation - there is so much about

the game you can modify and this can

change the game dramatically. You can

control the availability of powerups,

these consist of double fire toggles,

bouncing bullet toggles, and coins which

R
EV

IEW
S

depending on the options you select. If

your opponent dies before you, you

win. It doesn't matter whether your

opponent is killed by sentries, yourself

or a combination of the two. If the

option is selected you can win if at any

stage during the game you have full

health - of course for this to work

players must not start with full health.

There are also circular bases dotted

around the maze, the number of which

can be specified in game setup. If any

one player controls all bases they win.

As well as your opponent you also have

to watch out for the in-game sentries.

These patrol certain areas of the maze

in a straight line, constantly shooting

out. If you get hit by a bullet you loose

health, but beware sentries will also

collect powerups to improve their

bullets and increase their health if they

are in their path. Sentries also collect

bases if they come across one, so watch

out!

As a two-player game Arena makes use

of Game Maker's views function to

enable a split screen, one side following

each player around the maze. If you're

quick you may be able to grab a sneaky

glance of your rival's location, but

likewise this makes you vulnerable too.



REVIEWS

represent health.

As well as setting

the number of each

kind of powerup to

be randomly distri-

buted around the

maze, you also de-

cide whether or not

the powerups are

replenished during

the game or if once

they are taken they

are gone. You can

even export your

favourite configur-

ation to be loaded

next time you play

Arena.

So, what is the aim

of the game? There

are a number of

different ways you

can win Arena -

14 | P a g e July, 2007 http://markup.gmking.org

Arena

There are no notable bugs in the game,

the maze generator only creates

solveable mazes, so there is no chance

of being isolated from half of the game.

The only slight problem is that, if you try

hard enough or are unlucky enough, you

can get your ship stuck on the end of a

section of maze wall - however this

occurs very rarely.

There are no over-used sound effects,

however if you are playing lots of games

in a row the mission impossible theme

tune on the menu and game setup

screens may start to get irritating. The

game does have background music but

this does not distract from the

gameplay. Perhaps the shooting sound

effect will becoming irritating, especially

if your opponent likes to hold down fire

constantly as they explore the maze.

The graphics and effects aren't amazing

but in a game like this there is no need

for professional quality graphics as this

would just increase the file size. The

sprites used are perfectly suited to the

game and nothing looks out of place.

R
EV

IEW
S

The game is accompanied with an in

game help file, and the installation also

includes a textual version of the

documentation which covers all aspects

of the game and explains what

everything in the game does.

REVIEWS

Arena’s split screen follows both players around the maze.

C
o

n
cl

u
si

o
n

0

2

4

6

8

10
Documentation

Graphics

Sounds

MusicCustomization

Game Play

Overall

Ratings

CONCLUSION
ADVERTISEMENT

ADVERTISEMENT -

ADVERTISEMENT -

ADVERTISEMENT -

Pros: Detailed instructions included with game. Virtually
every aspect of the game can be changed.
Cons: Menu music may get annoying. Small issue of
occasionally getting stuck.
Overall: An excellent two-player Game Maker game.

Download Size: 2.5MB

Download Type: Installer

Author: Dennis Toney, Delta 9 Games

Game Maker Version: 4.3

Released: 2/4/2003

Get it: xrl.us/arena

Phil Gamble, GameMakerBlog.com ■

http://www.gamemakerblog.com/gma
http://xrl.us/arena
http://www.gamemakerblog.com/

http://markup.gmking.org July, 2007 15 | P a g e

TU
TO

R
IA

LS

Ammo

other way, draw_sprite_ext should be

used instead of draw_sprite,

furthermore, you could use the

draw_self script available from

GMLscripts.com.

Reloading Bullets
Reloading bullets depends on the way

you want bullets to be reloaded. Some

games are made so that when the

reload button is pressed, the number of

bullets is incremented, so the existing

bullets won’t be lost.

Other games are made so that the

remaining bullets are lost, and the

number of bullets is then restored.

The code difference is fairly simple. In

the first type, the ammo value will be

incremented by a certain number:

ammo+=50;

The second way is what I consider the

better way, and that is to set the

number of bullets directly to the wanted

value, so, if we wanted to set the

number of bullets to 50, we use:

ammo=50;

In reality, that is what happens: the

existing ammo in the gun is disposed; a

new set of bullets is added to the

gun/weapon.

Shooting the Bullets
if (ammo>0)

{

 SHOOT COMMAND

 ammo-=1;

}

The code is fairly simple – if a sufficient

number of bullets exist, the gun is shot

and the ammo variable is subtracted by

1.



TUTORIALS

T
h

e
 C

o
u

n
te

r
S

tr
ik

e
 i

n
te

rf
a

ce
,

sh
o

w
in

g
 a

m
m

u
n

it
io

n

Creating an ammunition system might

not be the hardest task on Game Maker

for many, but for the new GM users out

there – it’s definitely challenging. I’ll

overview how to create a simple system

that monitors the amount of bullet a

certain weapon can shoot, and only

allow the player to shoot that amount.

Designing the Basic System
Code needs to be added to the player

object to:

1- Set the number of bullets the

player starts with

2- Monitor number of bullets

3- Subtract a bullet each time the

weapon fires

4- Reload the number of bullets

when reload occurs

Initialization
To set a number of bullets the player

starts with, a variable simply needs to

be defined. Here, we will use the

variable ammo:

ammo=50;

Display
To draw the current amount of bullets

the player is allowed to fire, a simple

draw_text function is used:

draw_text(X,Y,string(bullets));

//edit X and Y

Of course, when putting code in the

draw event, the player sprite will now

disappear, and will need to be drawn

manually.

draw_sprite(sprite_index,image_index

,x,y);

If the player sprite is rotated using

image_angle or manipulated in any

16 | P a g e July, 2007 http://markup.gmking.org

TU
TO

R
IA

LS

Ammo Cont.

Drawing ammo value in

view
When you have a 2-dimensional game

taking place in a large world, you will

need to use the view feature in Game

Maker so that only a part of that word is

shown at any one moment on the

screen.

Using regular x and y values are relative

to the room itself, and not to the view.

So, in order for us to correct this issue,

the x and y coordinates of the view itself

are obtained, and incremented to the X

and Y values used for drawing the text.

In Game Maker 6.0 and above,

view_xview corresponds to the view’s X

axis and view_yview corresponds to the

view’s Y axis. Before Game Maker 6.0,

view_left used to correspond to the x

axis, and view_top corresponded to the

y axis.

This means that the previous draw

event is now modified to the following

in Game Maker 6:

draw_text(view_xview+X,view_yview+Y,

string(bullets)); //edit X and Y

Limiting the number of

reloads

The player can obtain packages to

increase amount of reloads in Falcon

Squad, a GM game

Other than the fact that you run out of

bullets and need to re-fill, one of the

‘cool factors’ of some games is that you

also run out of reloads, and need to

obtain certain ‘packages’ to increase the

number of reloads you have. The

analogy is simple, and only makes the

game more realistic.

Initialization
For that same object, other than

initializing the ammo itself, we should

also initialize a variable used to count

the number of reloads available, and

since I’m a creative person, I’ll call it

reloads. You didn’t see that coming did

you?

reloads=5;

Reloading Ammo
In the reload event, some changes will

now have to occur. We’ve talked about

the single line of code that performs the

actual reload above, this line of code

will be referenced to as RELOAD, and

will be surrounded with if conditions

and another line of code to make it all

work.

if (reloads>0)

{

 RELOAD

 reloads-=1;

}

Getting more reloads
A ‘package’ that gives the player some

ammo could simply be an object that

lies somewhere on the ground of that

world. On the collision event for that

object, the player should “take” the

package – meaning the package object

will have to be destroyed, and the

number of reloads should be

incremented.

with(other)

{

 instance_destroy();

}

reloads+=3; //EDIT VALUE

Using multiple weapons
What if you wanted multiple weapons

to exist? How could you make bullets

and reloads count individually for

separate weapons?

Here comes one of the benefits of using

arrays!

Concept
What will happen is that each variable

will become an array, so reloads[0]

represents the reloads for the first

weapon, while reload[1] represents the

reloads for the second weapon, and so

on.

Dawn of the Infested, a Game Maker

game, allows the player to choose

between multiple weapons

Basically, each weapon will have its own

index value, and a new variable will be

added that stores the value of the

current weapon being used.

Initialization
Initialization is now different; the



TUTORIALS

http://markup.gmking.org July, 2007 17 | P a g e

TU
TO

R
IA

LS

Ammo Cont.

 number of bullets for several weapons

must be initialized, as well as the new

current weapon variable:

ammo[0]=50;

ammo[1]=50;

ammo[2]=20;

reloads[0]=5;

reloads[1]=10;

reloads[2]=2;

current_weapon=1;

Display
This time, only the number of bullets for

the current weapon should be

displayed. The value of the current

weapon variable could be used to

return the number of the bullets

available for that weapon.

The way this is done is by replacing:

draw_text(view_xview+X,view_yview+Y,

string(bullets)); //edit X and Y

With:

draw_text(view_xview+X,view_yview+Y,

string(ammo[current_weapon]));

//edit X and Y

Reloading
The variable ammo would be replaced

with ammo[current_weapon] instead. If

you are also monitoring the number of

reloads, the reloads variable will

become reloads[current_weapon] as

well.

Shooting the Bullets
Same as before, each ammo variable

would be replaced with

ammo[current_weapon]. This includes the

‘if’ conditions and the subtraction of

number of bullets for that weapon.

Now, to choose for what type of bullet

to be actually shot, a switch statement

is used:

switch(current_weapon)

{

 case 0:

 SHOOT 1 COMMAND;

 break;

 case 1:

 SHOOT 2 COMMAND;

 break;

 case 2:

 SHOOT 3 COMMAND;

 break;

}

Getting more reloads
The actual reloading increases the

number of bullets for the current

weapon, but for increasing the number

of reloads for a particular weapon, it

becomes different.

Different packages exists for different

weapons, and when a player collides

with a particular package, this package

only increases the number of reloads

allowed for a particular weapon,

whether or not it is the current weapon.

Multiple objects could be created for

different packages, each supposedly for

a different type of weapon. The

reloads variable is then replaced by an

array: reloads[#]. The “#” could be

replaced with a fixed number (in this

example 0, 1, or 2) corresponding the

weapon this package is related to.

Switching between weapons
Switching the current weapon being

used is very simple; all it requires is to

change the value of the current_weapon

variable.

Conclusion
Many – if not most – of the shooter

games out there take advantage of such

a system of ammunition. I hope this

guide has made it easy for some of you

to create your own shooter game.

Eyas Sharaiha 

TUTORIALS

18 | P a g e July, 2007 http://markup.gmking.org

IN
TER

V
IEW

Martin “FredFredrickson”
Crownover

For this issue, I decided to interview

Martin Crownover, most known in the

GMC as FredFredrickson, the creator of

several awesome multiplayer games.

Since this issue is more concentrated on

multiplayer games, I thought having a

developer-oriented discussion with

someone with extensive GM-

multiplayer experience would be

beneficial to all of our readers.

Interview

Many newbie developers

want to make MMORPG

games, or any other type of

multiplayer games. Any words

for those people?
I don't like to tell people that making a

successful MMO in GM is impossible,

because it's technically not, but my

advice for people who are beginners

with GM and with high hopes for

making such a game is to start small.

Get comfortable with GM. Take the

time to learn how to organize your

projects and how to write efficient

code, and then go on to make your

masterpiece. It'll benefit you in the end,

and even if you don't wind up using GM

for your magnum opus, you'll at least

come away from it with a good

foundation for logical coding.

Many multiplayer games have

features like chat, etc. What

features does a multiplayer

game need to have, and which

are just 'bonuses'?
It really depends on the type of game. I

think that if you're going to make a

multiplayer game, you might as well get

in all the features you want to get in,

and then if you're planning on releasing

a demo to the community or friends,

get feedback on what works and what

doesn't, and go from there. I think that

as developers (both indie and

commercial) start becoming more adept

at creating engaging multiplayer

experiences, and comfortable in that

realm, we'll be seeing a lot of

interesting implementations of it that

challenge our beliefs of what is and

what isn't a standard feature of

multiplayer.

There are existing GM

multiplayer capabilities, are

they enough for making a

good solid game?
To be honest, I haven't used them

enough to answer this question with

100% accuracy, but from what I have

seen and heard about the built-in Mplay

functions, yes, I think it's very possible

to create a good, solid multiplayer game

using them.

What Game Maker resources

do you find best for making a

multiplayer game?
Obviously, I’d say that 39dll is one of the

best resources out there for people to

code online games with Game Maker.

Enough people use it that you can get

good help with it, and there are some

pretty useful examples for it floating

around as well. I’d recommend

checking out just about all the open

source engines I’ve seen that use it –

everyone has their own unique way of

programming multiplayer, and every

multiplayer game is programmed

somewhat differently from the next, so

it’s good to know a broad range of

methods.

Lagging is a serious issue in

multiplayer games, any tips

on how to minimize this

effect?
I'm always having trouble with this
myself! But until Ethernet cables that
can deliver instantaneous
communication are developed, lag is
something which will always be
something we have to deal with.
Basically, since it is always there in some
form or another, the best we can do is



INTERVIEW

GMMovie

QUICK REVIEW Q
U

IC
K

 R
EV

IE
W

This DLL extends the possibilities for

playing both audio and video formats,

though the DLL is specialized in video

formats. The DLL uses MCI, which is

available directly from Game Maker itself –

but apart from being easier to use, its

author says it might be faster. The DLL

doesn’t create any pauses and is ideal for

playing intros and trailers inside the game.

Get it now!
http://xrl.us/2iai

http://xrl.us/2iai

http://markup.gmking.org July, 2007 19 | P a g e

IN
TER

V
IEW

Martin “FredFredrickson”
Crownover Cont.

INTERVIEW

optimize the packets of information we

send out, and then hide the rest of the

problem. My advice is to go through

your game, and figure out what is

possible to compute on the client side,

and what is not. Often, you can find

things in your packets that can be taken

out and computed client-side, as well as

things that just don't need to be there.

If you're clever about structuring your

packets, and add in some sort of motion

prediction / smoothing for movement

(for action-oriented games), you're

good to go.

Some multiplayer games

create direct connections

between players, while others

depend on setting up servers,

which do you think is best?
I think that as long as one player is the

host, or a dedicated server application is

used, the game should be fine. I've

heard of people trying to set up

connections where everyone is sending

messages to everyone else, and I can't

help but think that this would be a

nightmare to control. Set up your game

so that all the messages that players

send and receive are routed through

one central point. It may be hard to

wrap your mind around this concept (it

still is for me at times), but ultimately it

will give you far greater control over

what happens in your game, and how

smooth of an experience it is for people.

Hover Tank 3D was the first

multiplayer game I've seen

you work on. How much have

your games evolved since you

started?

My games themselves have evolved out

in different ways - each project I've

done since HT3D has filled a gap for me,

so to speak. I think that more than

anything else, the code underneath the

hood of my games has evolved as I've

gone from project to project. There is a

distinct difference between the way I

coded HT3D back in 2005, and the way I

would code it now. That's one of the

reasons why I haven't re-opened the

project to recompile it for GM7 / Vista -

I don't want to look at the code and

start tinkering with it! A progression in

code practices and knowledge is good

though, and I think that it will serve me

well when I get around to working on

the sequel to HT3D again.

Most of your multiplayer

games have both single and

multi-player modes. Why do

you think this is necessary?
Even though most of the industry seems

to be shifting to the multiplayer side of

things, I think that it's still important to

include the players with slow net

connections, or who just wish to play

alone. I can't say that my more recent

work caters to this group as much as

HT3D or Evolites have, but I am planning

a pretty comprehensive single player

experience for Falcon Squad, and I hope

that people will play it and enjoy it.

GMC mods are always closing

wish-list topics -- what is your

GM wish list?
I try not to think too much about what I

wish GM was, because I think I'd get too

wrapped up in wishing it were different

here and there, and then end up being

disappointed with what it is. Don't get

me wrong though, it's an awesome

program, and I will continue using it

until I run out of reasons to! As for my

wish list, I would really like to see (as

would many others, I am sure) a speed

increase, more 3D functions (like

extended model type support, better

support for animations made in outside

programs, etc.), and better security. Of

those three, I think the one I would

appreciate the most at this point would

be the added 3D functionality. I know

GM isn't really the best app for

developing 3D games, but it'd still be

nice, and I enjoy the challenge it

presents with its speed and functional

limitations. I imagine that in some

ways, it's almost like developing for a

console with limited specs.



20 | P a g e July, 2007 http://markup.gmking.org

IN
TER

V
IEW

Martin “FredFredrickson”
Crownover Cont.

INTERVIEW

What makes a multiplayer

game popular? Is it just

quality?
I think quality is always big part of the

success of a game, but for multiplayer

games specifically, giving the players a

fun way to interact with each other is

key. As an example, most multiplayer

games seem to revolve around players

killing each other in some way or

another, but if you give them an

assortment of weapons to do it with,

the game becomes more interesting.

I guess most of our readers

already know about Reflect

Account System. For those

who don't what is it? Is it a

member system, server

system, client system, or

what?

The Reflect Account System is an

account system that was developed to

make finding multiplayer games easier

for people. Most people who know of

the system know of it because they

have used it to connect to other people

in games like Aces High Over Verlor

Island and Sapphire Tears… since it’s

based on a web server, it doesn’t host

these games itself, but it acts as a

master server list with a lot of extra

perks that the account system affords it.

Built off of some things I had originally

put into Hover Tank 3D for multiplayer,

it basically uses an account system to

identify / authenticate players, and give

developers a set of tools that are easy

to use, but powerful as well. For

example, once you’ve got the login

system in place for your game, using the

Reflect Account System, you can upload

high scores with one script, and then

download them and parse them with

another. You can query the server for

listings for your game, download

nicknames and player colors from the

server. It’s a really handy system, and I

think it can add a bit of professionalism

to your game.

Not all Reflect-Enabled games

are yours, yet you don't let

anyone make a game taking

advantage of the Reflect

Account System. What criteria

do you look for in a game that

makes you decide whether or

not will it make a good reflect-

enabled game?
Really, I just look for people who are

serious about making their game, and

who have shown in their prior work to

have the talent and drive to actually

finish the project. I know I am guilty of

it myself, but having a lot of unfinished

games on the system isn’t good, so

having the ability to complete the game,

and the will to polish it ‘til it shines are

probably the two most important

things.

So, any plans on going

commercial with (some)

Reflect Games?
Eventually… you never know! I’ve been

very busy with my work lately, but

eventually, when I have more time to

program with GM again, you might see

me attempt a more lucrative release.

Overall though, I’d like for the service,

and the bulk of its games, to remain

free.

Though I told you the

interview will be developer-

oriented, I can't help it but

ask: is HT3D 2 coming down

the pipe anytime soon? You

haven't posted in the Reflect

topic about that for a while.
Well, like I said, I have been quite busy

lately. I recently decided I needed to

overhaul Falcon Squad, and make it into

something a little different than what it

currently is, so maybe I will take the

extra time to play around with some

HT3D 2 stuff again. I am slightly

interested in learning Xtreme 3D, or one

of the other GM 3D DLL’s, so who

knows… maybe HT3D 2 will be even

more graphically intense than I

originally planned.

It’s a wrap! Is there anything

else you would like to add?
Not really, just thanks to you for the

interview, and thanks to everyone who

read it! I truly appreciate it.

Conclusion
So that was it – my interview with one

of the most respected game makers out

there, especially in the multiplayer area.

Be sure to check out Martin

Crownover’s games by visiting the

Reflect Games website here:

http://reflectgames.com/.

Eyas Sharaiha 

http://reflectgames.com/

http://markup.gmking.org July, 2007 21 | P a g e

TU
TO

R
IA

L

Game Maker and the Registry
TUTORIAL

When creating games, there are a few

ways to store small amounts of data.

This can be done by storing the data in

external files, but another way to do

this is to use the registry to store data.

The registry also has some advantages.

This article will explain the use of the

registry and how to access and change it

with Game Maker.

The registry
Now what exactly is the registry?

Actually, it’s a database to store small

data. This database is present on each

computer that has Windows on it. The

great thing is that there’s a very easy

way to access and view it. Windows

comes with a handy tool: the registry

editor. You can open the registry editor

by typing “regedit.exe” in the command

prompt. And there it is! You’ll notice

that the registry is subdivided in five

main keys:

 HKEY_CLASSES_ROOT: this looks
like it is a complicated key, but
it’s actually a very interesting
one, as will be explained later in
this article.

 HKEY_CURRENT_USER: as you
might expect, this key contains
data about the current user on a
computer (related to user
profiles).

 HKEY_LOCAL_MACHINE: this key
looks like the above, but it
contains data that applies to all
users on a computer.

 HKEY_USERS: this key contains
user profiles, not accessible
with Game Maker, though

 HKEY_CURRENT_CONFIG:
contains data about hardware
profiles.

If you’ve checked out those keys, you

will have noticed that the registry editor

displays the keys in a tree structure.

Keys can contain subkeys or just values

(named variables with a value). This

structure can be compared to the

directory structure of Windows. Keys

then are directories and values are files.

Directories can contain subdirectories.

And just like directories can contain

multiple files, keys can contain multiple

values. The values can be of different

types. But since GM just supports two

types (REG_SZ and REG_BINARY), these

won’t be explained further.

So the registry exists, but the registry

contains data, and data is usually stored

in some files. This is no other with the

registry. The data from the

HKEY_CURRENT_USER key, for example,

can be found in “C:\Documents and

Settings\<your username>” (if C: is the

system drive, of course), in

“NTUSER.DAT”. It can’t be opened,

though. Windows doesn’t let you do

that. No registry editing that way.

The solution is simple: let’s use Game

Maker to do it.

GM’s registry functionality
GM’s registry functions allow for many

possibilities. First of all, a remark:

editing the registry might be dangerous

if you don’t know what you’re doing.

Here in this example, we will assume

that we know what we’re doing.

So let’s look at GM’s registry functions.

GM has 11 registry-related functions.

The first 5 allow for few possibilities.

Why, you wonder? These functions only

work with specific keys. Suppose you

want to write a value to the registry and

your game id is e.g. 782526. You could

use a piece of code like this:

registry_write_string("A string ",

"string content ");

Then Game Maker will create the

following key in the registry (you can

check this in the registry editor):

HKEY_CURRENT_USER\Software\Game

Maker\782526

All strings and real values GM writes to

the registry using the normal registry

functions appear in that key. Reading

values also reads values from that single

key.

It is clear that these functions are very

limited. You only get access to a single

key in the registry. To get access to all

keys of the registry, we will need to use

the extended registry functions.

The extended registry functions almost

have the same name as the previous

ones, but you need to add “_ext” to the

function. Also, these functions require

another argument: the key. The

previous functions didn’t allow you to

specify the key in which to write the

values. These functions do. An example:

registry_write_real_ext("Software\My

Game ", "PlayTime ",6);

The function above writes the following

key to the registry:

HKEY_CURRENT_USER\Software\MyGame

And, it writes the following data to that

key:

PlayTime 6

You can again check this in the registry

editor. When you open the Software



22 | P a g e July, 2007 http://markup.gmking.org

TU
TO

R
IA

L

GM and the Registry Cont.
TUTORIAL

key, you’ll notice the MyGame subkey,

containing the real value (REG_BINARY)

PlayTime set to 6.

Now there’s still one thing that needs to

be explained: setting the root. Up till

now, we’ve only written values to the

HKEY_CURRENT_USER key (which is the

default used by Game Maker). This can

be changed by using the

registry_set_root function. This

function requires only one argument, a

real value indicating the registry root:

0. HKEY_CURRENT_USER
1. HKEY_LOCAL_MACHINE
2. HKEY_CLASSES_ROOT
3. HKEY_USERS

And now, you have full access to all keys

of the registry. A small remark here: as

you might’ve noticed in the examples,

subkeys can be passed by using the “\”

sign. That way, you can get the value of

values in subkeys.

Reading values from the registry

happens in exactly the same way.

Although these functions allow you to

read from and write to the registry, they

can’t be used to e.g. get the number of

subkeys in a key or the number of

values in a key. Too bad, but the current

functions are more than sufficient to

add some nice functionality to your

games and programs.

Tips ’n tricks

File association
By writing some data to the registry,

you can associate files with your game

or program. The registry key where all

file associations are stored is the

HKEY_CLASSES_ROOT key. You can check

this in the registry editor: the

HKEY_CLASSES_ROOT key starts with a

huge list of file extensions, followed by

an even longer list of file descriptions.

Some keys and values are required:

 A key with the file extension is
created e.g.
“HKEY_CLASSES_ROOT\.gmf”.
Whenever a key is created, is
always has a default value
(which is actually <no value>).

 This default value is then set to
e.g. “GameFile”. Now what does
that mean? It is the name of the
file description that can be
found lower in the list. Actually,
the only thing this key does is
refer to a key that contains the
real file association information.
This latter key also contains
some subkeys.

So how can this be achieved by using

GM’s functions? Let’s say you have a

game that can open the “.gmf” file

extension. The first thing you need to do

is set the registry root to

HKEY_CLASSES_ROOT:

registry_set_root(2);

From now on, all data will be written to

HKEY_CLASSES_ROOT. The first key to

write is the key named “.gmf”:

registry_write_string_ext(".gmf","",

"GameFile");

This piece of code writes a new key

“HKEY_CLASSES_ROOT\.gmf” to the

registry and sets the value “GameFile”

(you can choose this name yourself) to

the default value .When you want to

change the default value, you need to

pass an empty string as the value name

to the function.

Now the “GameFile” key needs to be

created:

registry_write_string_ext("GameFile ",

" ", "A file type used by my game ");

The default value of this key is used as a

description for your game file. Now

subkeys need to be added to this key. The

first one sets the icon for the file:

registry_write_string_ext("GameFile\De

faultIcon","","C:\Program

Files\MyGame\icon.ico");

“DefaultIcon” is the key where the icon file

path is stored (you cannot choose this

name yourself, it’s predefined). Also note

that it is again the default value that is

used to store the filename of the icon file.

Now the “open” key, that is the key that

contains the information on how to open

the file, needs to be created. The “open”

key is a subkey of a key named “shell”. To

create it:

registry_write_string_ext("GameFile\sh

ell\open","","Open with &MyGame");

This piece of code creates the “open” key

as a subkey in “shell”, which is also created

(you cannot choose these names yourself).

As you can see, the default value is this

time set to “Open with &MyGame”. This

text will be displayed as an item in the

menu that is shown when the user right-

clicks the file icon on his desktop. The “&”

sign does something special. It indicates

the letter to be used as a keyboard

shortcut. In this case, it would be the M of

“MyGame”. So suppose the menu is open

and the user does not use the mouse to

select that menu item, then he can press

M (not Shift+m) on his keyboard. That will

give the same result.



http://markup.gmking.org July, 2007 23 | P a g e

TU
TO

R
IA

LS

GM and the Registry Cont.

TUTORIALS

Now there is one key that needs to be

added:

registry_write_string_ext("GameFile\

shell\open\command","",'"C:\Program

Files\MyGame\mygame.exe" "%1"');

The key is called “command” and is a

subkey of “open” (you can’t choose

these names yourself). Note that 2

parameters are passed this time. These

need to be put between double quotes.

As a consequence, single quotes must

be used in the piece of code. The first

parameter is the link to the game’s

executable. The second one is “%1”.

This requires an explanation. At startup,

some parameters can be passed to the

game. These parameters all have an

index. The “%1” value indicates that this

parameter will have index 1. Voilà,

that’s all for the file association. It might

be necessary to log off and log on again

for the changes to take effect.

Okay, so the file association is done.

Windows knows which icon to display

for the “.gmf” file extension and the

path to the executable to open it. The

problem is: the game doesn’t know yet

that it needs to open that file on

startup.

For that, we need to use another Game

Maker function: parameter_string(n)

The parameter_string function returns

the string of the n-th parameter that

was passed to the game at startup.

Since we gave this parameter index 1, it

can be retrieved with:

filepath=parameter_string(1);

The filepath variable now contains the

value of parameter 1. The value of that

parameter is the path to the file the

user opened. And now the problem is

solved. Windows will open the file with

your game and your game knows which

file the user wants to open.

The Volatile Environment key
This key can be found in the

HKEY_CURRENT_USER key:

HKEY_CURRENT_USER\Volatile

Environment

It contains some interesting values e.g.

the current user’s application data

directory (APPDATA), homedrive

(HOMEDRIVE) and the user’s directory

(HOMEPATH).You can view all these

values in the registry editor.

The Environment key
 This key can also be found in the

HKEY_CURRENT_USER key:

HKEY_CURRENT_USER\Environment

Interesting values in this key are the

user’s language (LANG) and the link to

his temporary directory (TEMP or TMP).

Conclusion
The registry contains a lot of interesting

information about everything on the

computer. Unfortunately you need to

know in which keys that information can

be found. Game Maker’s registry-

related functions can be used to get

useful information from the registry, but

also for writing to the registry e.g. file

association and storing data from your

game.

Bart Teunis 

39DLL

QUICK REVIEW Q
U

IC
K

 R
EV

IE
W

39dll is a popular socket DLL which gives

games that use it the power to access

Windows Sockets and therefore

multiplayer capabilities. Many popular

multiplayer Game Maker games use the

39dll as a method of creation of servers

and communication between different

players of a game. Great DLL, constantly

updated, and high quality – recommended.

Get it now!
http://xrl.us/2kmi

http://xrl.us/2kmi

24 | P a g e July, 2007 http://markup.gmking.org

TU
TO

R
IA

LS

Instant Collisions
TUTORIALS

Hello, in this article, you will learn the

common mistakes in 2D shooters.

Common Mistakes
Some of the most common mistakes

made in these games are the bullets.

Some people use the retro style bullets

where the bullets move rather slow, but

most people don't like waiting for that

little black ball to move toward their

target. This is a common mistake in

games. This can easily be fixed with

something called "rangefinding" it finds

a range of pixels and returns true or

false if the range ends before it hits its

maximum distance. Most people do not

know how to make this but it is actually

very simple.

Starting the Script
Start with a script in your game, name

the script: "instant_collide".

Now so it is user friendly and a lot like a

function, we will add arguments to the

script. Add this code into the script:

x1 = argument0; // Source X

y1 = argument1; // Source Y

dir = argument2; // Direction to shoot
EX: point_direction(x,y,mouse_x,mouse_y);

maxdist = argument3; //maximum
distance. so the game dosent crash if it

goes out of the room.

obj = argument4; // obj/flag to stop
at. i always enter "solid" (without

quotes)

dx = 0; // just to define destination
x,y

dy = 0;

col = 0;

var xx,yy,dist; // make the variables.

dist = 0;

Do not include the quotations. Now we

have made our variables, and are ready

to get into the good stuff.

That code simply defines the variables
and chooses which entry will take place
for the variables. Ex:
 instant_collide(12,4,90,1000,solid);

That example would set the X1 to 12, Y1

to 4, DIR to 90,the max distance to

1000pixels, and the object to stop at to

SOLID

The SOLID means the range will stop at

a solid.

The Script’s “Brain”
Now since we know what the code

above does, we can now go into the real

coding.

We will create a do{} to repeat the code

until a certain point. This can be helpful

in games.

Put this code into your game:

do {

 dist+=1;

The dist+=1; means that the script scans

each pixel to find its destination, 4

works great but sometimes it goes

through the blocks, change this around

to change the performance of the game.

Higher value = better FPS, Lower value =

worse FPS.

Now we will add more code into that

do{} event so it not only just adds on to

a variable.

Add this code into your script:

 xx = x1+lengthdir_x(dist,dir);

// just the direction of fire and

stuff.

 yy = y1+lengthdir_y(dist,dir);

 dx = xx; // destination X

 dy = yy; // destination Y

The lengthdirs are just a directional

virtual line, they are updated every time

the do{} event is run so they add on

pixels to the range.

The DX and DY are the return values;

these are the Coordinates you will use

later on in the script.



N_menu DLL

QUICK REVIEW Q
U

IC
K

 R
EV

IE
W

 The N_menu DLL allows the

user to create real Windows

menus for inclusion in a

game/tool. Many capabilities

exist for adding images,

submenu items, events, and

more. The example is available

only in .gmd, but could be easily

converted to .gm6 and .gmk

through Game Maker. A GEX

extension is also available.

Get it now!
http://xrl.us/nmenu

http://xrl.us/nmenu

http://markup.gmking.org July, 2007 25 | P a g e

TU
TO

R
IA

LS

Instant Collisions Cont.
TUTORIALS

Now we need to end the do event with

a bracket and an until();

Insert this code into the script:

}

until(position_meeting(dx,dy,obj) or

dist>maxdist);

That checks if the position of the range

has hit a solid object, or the object you

preferred, and it also checks if it

reached its max distance, so the game

doesn’t freeze if you don’t hit anything.

Finishing the Script
Now what we need to do, is make the

return variables and simply make an

if() event to make it more user

friendly to check if it has collided or not.

Add this code into your script:

if(position_meeting(dx,dy,obj)) { //

if the destination has collided with

something.

 col = 1; // yes it has.

} else {

 col = 0; // no it hasnt.

}

The code above checks whether it has

collided or not. This can be useful.

Now we need the returns. These are

what we need to even create a bullet.

Add this code into your script:

return dx; // return it, so we can use
to draw.

return dy;

And that’s all of the script!

Your script should look like this:

x1 = argument0; // Source X

y1 = argument1; // Source Y

dir = argument2; // Direction to shoot
EX: point_direction(x,y,mouse_x,mouse_y);

maxdist = argument3; //maximum

distance. so the game dosent crash

if it goes out of the room.

obj = argument4; // obj/flag to stop

at. i always enter "solid" (without

quotes)

dx = 0; // just to define

destination x,y

dy = 0;

col = 0;

var xx,yy,dist; // make the

variables.

dist = 0;

do { // we use this do {} statement

to keep going each pixel.

 dist+=1; // add on to the

distance so we dont stop until we

hit something.

 xx = x1+lengthdir_x(dist,dir);

// just the direction of fire and

stuff.

 yy = y1+lengthdir_y(dist,dir);

 dx = xx; // destination X

 dy = yy; // destination Y

} until(position_meeting(dx,dy,obj)

or dist>maxdist);

if(position_meeting(dx,dy,obj)) { //

if the destination has collided with

something.

 col = 1; // yes it has.

} else {

 col = 0; // no it hasnt.

}

return dx; // return it, so we

can use to draw.

return dy;

Executing the Script in

Game
Now we want to run the script in-game,

make 3 sprites:

 spr_block

 spr_player

 spr_bullet (2x2) origin=1x1

Use the settings provided for the

sprites.

You can set your player sprite to

whatever you want. The same will

happen with the block.

Now create the block object, and set its

sprite to the spr_block.

Don’t add any code to the block; just

check the flag "Solid". Then create the

bullet object. Set its sprite to spr_bullet.

Add a STEP event to the bullet obj and

add a code block. Add this code into the

Step event:



Ultima 3D Reloaded

QUICK REVIEW

Ultima 3D Reloaded is a 3D

extension for Game Maker,

which supports many cool

features such as 3DS modeling,

secular lighting, model

transformation, and more – all

with faster loading times. You

could see the GMC topic for

more information about the

extension, its latest features,

and a list of its features.

Get it now!
http://xrl.us/ultima

Q
U

IC
K

 R
EV

IE
W

http://xrl.us/ultima

26 | P a g e July, 2007 http://markup.gmking.org

TU
TO

R
IA

LS

Instant Collisions Cont.
TUTORIALS

if(!place_free(x,y)) {

effect_create_below(ef_smoke,x,y,10,

c_gray);

 instance_destroy();

}

This code checks if it has collided with

anything. If it has, it creates a puff of

smoke, and destroys itself. Now make

sure the bullet isn’t solid.

Create the player object, and set the

player object's sprite to spr_player.

You do not need any player physics for

this, add it if you want though.

Add this code into the create event:

free=1;

shooting=0;

The free variable tells our player that

the place is free. Otherwise it would say

it isn’t free before you shoot.

Shooting is set to 0 for later uses, it’s

just basic creation.

Now since we are done with the create

event, add an End Step event and put

this code in there:

if(variable_local_exists("col")) {
// see if we are shooting, so it dosent

cause an error.

 if(col=1) { // if col=1 (if the
line has collided with an object)

 free=false;

 } else { // if col=0 (the line
hasnt collided)

 free=true;

 }

}

That checks if we are shooting, and then

sees if the col variable is true or false, so

we can tell whether it has or hasn’t.

That’s all for the end event.

Now Create a Global Left Pressed event

and add this code into it:

var dir;

dir=point_direction(x,y,mouse_x,mous

e_y); // set direction to point at

mouse.

shooting=1; // set to one so we can

get rid of the variable

instant_collide(x,y,dir,1000,solid);

instance_create(dx,dy,obj_bullet);

alarm[0]=1;

Make sure to set the 3rd argument for

the instant_create to the bullet object

of your game.

Also, you’re probably thinking "What?!

An alarm event??”

True, we will create it now.

Create an alarm[0] event and add this

code to it:

shooting=0;

That sets shooting to 0 so it doesn’t

keep drawing the line later on in this

article. Now Finally!! Finishing the

script, add a draw event into the player,

and add this code into it:

if(free=false) { // if free is false

 draw_text(10,10,"Shot Something");

// say we have collided

} else { // if free is true

 draw_text(10,10,"Shot nothing");

// say we didnt collide

}

if(shooting=1) {

 if(variable_local_exists("dx")

&& variable_local_exists("dy")) {

// we check if the variables exist,

so we dont get an error.

 draw_line(x,y,dx,dy);

 }

}

draw_sprite(sprite_index,0,x,y);

//simply draw the sprite.

Now we are ready to set up the room!

Create a new room and add the block

objects all around and create a player.

Your instant collisions are complete!

Conclusion
Instant collisions give many advantages

over regular collision events, especially

when it comes to bullets in top-down

games.

If you want a bullet with a realistic

speed, chances are – the bullet will go

through the body without even colliding

with it!

In order for a bullet to collide with a

body normally, it should be slowed

down, considerably – this makes the

game unrealistic, and sometimes –

annoying; no one would really want to

wait a couple of seconds for a bullet to

kill the enemy – it should be done

instantly; bullets are fast!

This script allows you to restore realism

to your top down shooter games by

making bullets much faster.

mr.gibblet

http://markup.gmking.org July, 2007 27 | P a g e

R
EV

IEW
S

Coaster Rider

REVIEWS

CoasterRider is an excellent game by

Bl@kSp@rk, as featured on the YoYo

Games website. What is amazing to me

is that such an excellent game never

had a GMC topic, and virtually got no

attention within the GMC.

Graphics
The game has excellent graphics!

Whether it is the Pegasus itself, the

trees, the smooth grass and pieces of

“floating land”, the starts that you need

to collect, or the effects you get when

you collect them. Amazing. I will be a

fool if I gave it anything less than a 9.

Graphic Effects
The game has subtle graphic effects,

only here and there. The good thing is

not overused, and it is true what they

say “less is more”… but that’s too little!

The game gets a 7/10 in Graphic Effects.

User Interface
Whether it is the menu, tools, or

options – it functions so well, extremely

easy to understand, and it’s simple! The

game has only few UI concepts, and it

builds on them – it doesn’t confuse the

user with toolbars, menus, tooltips,

windows, etc – all are just simple

buttons with amazing graphics.

Even highlighting buttons and switching

between different tools could become a

rewarding experience! The game gets

10 out of 10, definitely!

Music
The game’s music is soo good! There are

5 music items, all high-quality OGG files.

The music makes the game more fun,

because it really fits with the game’s

theme. The game suddenly becomes

more exciting, more intense, and more

capturing – excellent work! 9 out of 10.

Sound Effects
Too little sound effects, but when they

are heard – it’s great! Clicking buttons,

colliding with stars or loops that speed

you up, all that triggers sound effects.

But I wanted more, like if the train

bumps on the ground at high speeds,

etc – I needed something that made the

game feel more realistic, that something

didn’t exist. 7 out of 10.

Level Design
Levels are well-designed. The first level

is easy, and then levels incrementally

become harder. For me, level 3 is way

too hard, but that’s where great gamers

are separated from the rest – good job!

However, Level 1 was not “all too easy”;

I would’ve expected it to be easier for

the first level. The game’s level design is

rated 9.

Overall
The game’s overall score is 8.5 out of

10. That’s a shame, because it could’ve

gotten a lot better if Sound effects and

Graphic effects are enhanced.

Nevertheless, great work indeed!

Eyas Sharaiha 

 Conclusion

Get it now: http://xrl.us/coasterrider

Download Size: 12.3 MB

0

5

10
Graphics

Graphic
Effects

UI

Music

Sound
Effects

Level
Design

http://xrl.us/coasterrider
http://xrl.us/coasterrider

28 | P a g e July, 2007 http://markup.gmking.org

R
EV

IEW
S

2P Shooter

REVIEWS

What they say
Select from 6 heads, 8 bodies, and two

guns to duel it out between two players.

Now with 4 weapons, the old MK9's and

M16, plus the new custom 'Riotgun' and

a nice little sword!

Quick Review
In this split-screen two player game you

and your friend each control a gray stick

man inside a platform environment.

Various weapons are spread throughout

the room which can be collected and

used to inflect harm on your opponent.

The aim of the game is quite simply to

kill your opponent before they destroy

you.

Different types of weapons can be

found around the room, each causing

different amounts of damage and with

their own unique features. For example

individual weapons have different fire

rates and swords can only be used close

up but are quite destructive.

You can only shoot left and right, and

once you’ve found a decent weapon

you may as well stick with it as there are

no limitations on the ammo you can use

during the game.

The biggest criticisms expressed at

YoYoGames are that the game should

have a single player mode and

something should be done to fix the

jumping bug. I certainly agree with the

second point – it is possible to get stuck

on the side of platforms within the

room. This is a pretty major bug and I’m

surprised the game was released with

this, especially seeing as this is the

second version of the game to be

released.

The support for a single player mode is

something I don’t necessarily agree

with. The game works well as a

multiplayer game – unless a decent and

extensive single player mode can be

added this will easily be outshone by

the multiplayer option.

There are several options that can be

customised including the appearance of

both players; there are also two rooms

to choose from. To be honest this

doesn’t make much difference at all to

the game play but at least the options

are there for you to choose from if you

wish.

The game has suitable music and sound

effects which complement the game

well. I’m not sure if they are original

but they do seem pretty generic. They

are a nice touch and without them the

game would be much duller.

Another criticism I have is the games

menu. They consist of very small

graphics which are hard to read and

click. It should be simple to have a well

designed and easy to use menu but it

seems this has been overlooked in an

attempt to improve the aesthetics.

Phil Gamble,

GameMakerBlog.com ■

Conclusion

Get it now: http://xrl.us/2pshooter

Download Size: 1.3MB

Author: Jack Sanders

Released: 16 June 2007

0
2
4
6
8

10
Docs

Graphics

Sound & Music

Customization

Game Play

Overall

http://www.gamemakerblog.com/
http://xrl.us/2pshooter

http://markup.gmking.org July, 2007 29 | P a g e

done for us. The YoYo Games staff is

one of them, and all the MarkUp staff

thank them for bearing with us, and for

the wonderful job they carried out. We

also appreciate the support that the

GMC moderators have shown us.

Also a big ‘thank you’ to

GameMakerBlog.com, GMLscripts.com,

GameMakerResource.com, and

hopefully soon – GMBase, they’ve been

a great help. We also want to show our

gratitude to everyone who has

contributed to MarkUp, including our

GMking.org ‘Journalist’ staff, and

everyone else who has wrote for

MarkUp.

But more importantly, we at

GMking.org would really like to thank

you – our readers, for giving us

And that was it! Issue 5 of MarkUp

magazine and our first issue since the

YoYo Games endorsement went public!

We hope you see this issue as an

improvement, as we have got a lot of

support and feedback from the

community. We truly hope this issue

was satisfying in every way.

We started talking to YoYo Games and

thinking about the endorsement since

April this year, and it has been exciting

so far! But more exciting than knowing

what was about to happen, and waiting

for the right time to announce it was

the feedback we got from the entire

community once the announcement

took place.

There are many people we’d like to

thank for all the hard work they have

TH
E W

R
A

P
 U

P

Until Next Time!
THE WRAP UP

feedback, support, and comments; the

help was truly appreciated!

If MarkUp is to grow, we’ll need your

help! You could help us by contributing

anything to the magazine, whether it is

articles, art, or any other form of help.

To contribute to the magazine you could

visit the MarkUp forum here, or by

directly contacting either Robin or Eyas

via e-mail (see MarkUp site) or PM.

What does the future hold for MarkUp?

Well, as our readership increases, we

expect to get more comments,

feedback, and hopefully support. We

hope our future issues will be of higher

quality – and that could only happen by

your much-valued contributions!

Once again, thanks for your support!

The MarkUp Staff

Markup is an open publication made possible by the contributions of people like you; please visit markup.gmking.org for
information on how to contribute. Thank you for your support!

©2007 Markup, a GMking.org project, and its contributors. This work is licensed under the Creative Commons Attribution-Noncommercial-No Derivative Works 2.5 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/2.5/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105,
USA. Additionally, permission to use figures, tables and brief excerpts from this work in scientific and educational works is hereby granted, provided the source is acknowledged. As
well, any use of the material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17
USC, as revised by P.L. 94-553) does not require the author’s permission.
The names, trademarks, service marks, and logos appearing in this magazine are property of their respective owners, and are not to be used in any advertising or publicity, or
otherwise to indicate sponsorship of or affiliation with any product or service. While the information contained in this magazine has been compiled from sources believed to be
reliable, GMking.org makes no guarantee as to, and assumes no responsibility for, the correctness, sufficiency, or completeness of such information or recommendations.

Be sure to check out…

It's a song! It's a sound clip! No, wait -- it’s an audcast! That's right; we at GMking.org like to keep ourselves very busy! Since

June, we started releasing our weekly netcast (we prefer AUDcast), talking about Game Maker under the name "GMPod".

The audcast is approximately 20-30 minutes long, and in it we discuss various issues occurring in the Game Maker world, and

give advice to our listeners when it comes to using Game Maker.

We have received amazing support from the Game Maker Community! The great support has motivated us to continue

working on the audcast and improve it. We’ll be soon talking with some notable community members and we’ll start adding

some fun to the audcast as well!

Thank you for your amazing support so far, and please: keep those suggestions coming.

http://forums.gmking.org/index.php?showforum=31
http://markup.gmking.org/
http://creativecommons.org/licenses/by-nc-nd/2.5/

