

Interviews Resources Previews Reviews Tutorials

DDDaaatttaaa ssstttrrruuuccctttuuurrreeesss

GGGMMMPPPhhhyyysssiiicccsss

SSSmmmoooooottthhh ooonnnllliiinnneee mmmooovvveeemmmeeennnttt

LLLeeevvveeelll eeedddiiitttooorrrsss

IIInnntttrrroooddduuuccctttiiiooonnn tttooo DDDLLLLLL mmmaaakkkiiinnnggg

AAAnnnddd MMMuuuccchhh MMMooorrreee!!!

PPPaaarrrtttiiicccllleee eeeffffffeeeccctttsss

2 | P a g e July, 2007 http://markup.gmking.org

ED
ITO

R
’S D

ESK

Contributors This Issue

Robin Monks Editor

Eyas Sharaiha Editor

Andris Belinskis Editor

Leif Greenman Writer

Rhys Andrews Writer

José Méndez Writer

Philip Gamble Writer

Gregory Writer

Bart Teunis Writer

Sean Flanagan Writer

Jake Writer

Stephan Writer

Dan Meinzer Writer &

 Graphic Designer

Table of Contents

Editorials
Future-proofing 2
Clone Games 6
Make your code easier to read 10
Promoting your game to the GMC .. 20

Tutorials
Particle Effects Tutorial 3
Real time blur 7
Cartesian and Polar Coordinates 9
Binary for Beginners 11
Coding Styles 14
Modulo in Computer Science 15
Smooth Online Movement 17
Introduction to Making DLLs 19
Level Editors 22
GMPhysics 25
Graphic Design 31
Sound Effects: How Far? 32

Reviews

Textbar Maker 14
FATAL ... 33
Bounce 2 .. 34
Snow Ball War 35

Monthly Specials

Extension of the Month.................. 29
Script of the Month 30

MarkUp is a gmking.org publication;

please visit GMking for more free game

development resources!

Photo © 2007 Robin Monks

Future-proofing

How can you ensure your creation will

be around 10 years down the road and

still be enjoyed? That’s the topic for

this month’s Editor’s Desk.

This month was a bit different, as you

probably guessed by the late release

date, mainly I headed off on a two

month vacation and passed the mag

onto Eyas, who then left for vacation

and passed it onto Andris, who then

left. Long story short I’m finishing the

mag on my vacation time . We should

be back on track for next issue, just

keep those articles coming in!

But, heading back to the original

question, how can you “future-proof”

your game and have it available for

years to come? It’s a tough job, and it

has to start way back in the planning

stage with you subject matter and

target audience. Does your audience

need knowledge of a current event (e.g.

a sporting event?). Is the subject matter

time-specific? This will limit the

enjoyable life of your creation.

There is also the development side;

your choice of programming language

and development environment will

affect the about of time the game will

remain operable. Game Maker has a

good record here, with a game made in

GM v6 being playable on Windows 98 to

Windows Vista, a time frame of 10

years.

But, what can you do if you make a

game, and there isn’t a great interest in

it, or you are no longer able to maintain

it? How can you keep the game

progressing? Open Source it! Release it

under a license like the GPL or Creative

Commons and let other continue to

learn from it and improve upon it. Your

work lives on!

Not to mention open sourcing your

work under one of the aforementioned

licenses from the get go will allow you

to get contributions and patches from

fellow game developers, and can also

open up the opportunity for you to use

code and resources from other open

source games in yours.

Another way to keep your game living

on is to have it hosted on many sites, so

as sites begin to die out you’ll still have

your game hosted elsewhere, and

people will still have the opportunity

 to download it.

Keep up the games! I’ll see you

next month (hopefully).

Robin Monks,

Editor

http://gmking.org/

3 | P a g e July, 2007 http://markup.gmking.org

G
A

M
E EFFEC

TS

Particle Effects Tutorial

Introduction
Particle Effects are one of the most well

known visual/special effect methods

used in GML, and in many other

languages as well. Particles are various

shapes (and sizes), with very little

information. This information includes

where they’re supposed to go, their

appearance, and more. With such little

information, particles take little CPU

usage to calculate where and how to

draw them on the screen. This is why

particles are a great method to use if

you want effects such as rain,

explosions, smoke, fireworks, flames,

and more. In the GameCave Effects

Engine, many engines are created on

particles alone (and sometimes with

some non-particle effects attached).

Unfortunately, Particle Systems/effects

can take some time to get the hang of.

They also take a lot of trial and error,

and patience to get individual particle

types the way you want them.

Inside a particle system are two types of

elements. Particle Types, which are the

particles themselves – what they look

like, how they move, how they live/die,

etc. Particle types are actually not a part

of any system, and can be used by any

system – however, for the sake of

simplicity I like to think of particle types

as part of a system. The other type is

filters. Filters manipulate and change

the life of the particle as it is displayed

on the screen. The most commonly used

filter is an emitter. Emitters create the

particles in certain regions of a room.

Other filters include attractors (which

draw particles to a certain position with

an amount of force), destroyers (which

destroys particles that come

within a

region in the room),

deflectors (which bounces

particles off an invisible force), and

changers (which change particles into

other types of particles when they

collide with an invisible region/force). In

this tutorial, only the emitter filter will

be explained in detail.

Creating systems, filters,

and types
A game can have as many systems,

filters, and particle types as you like. Of

course, the more you have, the more

memory they take up. To create one of

these, all you must do is use the

following functions:

system0 = part_system_create();

//Create a System

emitter =

part_emitter_create(system0);

//Create an emitter in the system

'system0'

attractor =

part_attractor_create(system0);

//Create an attractor in the system

'system0'

destroyer =

part_destroyer_create(system0);

//Create a destroyer in the system

'system0'

changer =

part_changer_create(system0);

//Create a changer in the system

'system0'

particle0 = part_type_create();

//Create a particle type.

If you do not assign these functions to a

variable, the system is still created

however you will not be able to access it

because the unique ID of the system,

filter, or type was not saved to anything

you can refer to. Remember, if you

create a second system and assign it to

the same ‘system0’ variable, the old

system will technically be lost and you

will not be able to do anything with the

system.

GAME EFFECTS

4 | P a g e July, 2007 http://markup.gmking.org

G
A

M
E EFFEC

TS

Particle Effects Tutorial

As you can tell, systems and particles do

not have any arguments. This is because

they are not assigned to anything.

Systems cover all the filters, and so

filters must assign to the system but not

vice versa. Particles are not part of any

system, but filters inside systems (and

systems themselves) affect them.

After you create systems, filters, and

particle types, it’s a good idea to start

customizing them. This allows you to

make the filters, particles, and systems

behave as you want them to. In this

tutorial, I will show some key functions

and how to use them – however, to

explore the boundaries just search for

the function prefixes (i.e part_type_ or

part_system_) in the GM manual and

you will find an index of all the

functions.

Common System Functions
part_system_position(system0,x,y);

This presents the position of the

system. All filters in the system

that are positioned in the room

somewhere are positioned

relative to this functions x and y

values. For instance, if the

position of an emitter is from 5-

10 (x) and 5-10 (y), and the

position of the system is

changed from its default 0,0

values to 5,5 - then the emitter

will be placed at 10-15 (x) and

10-15 (y) on the room.

part_system_depth(system0,depth);

When particles are created from

emitters inside a system or a

system itself, this function will

determine what depth the

particles have.

part_system_update(system0);

This handy function allows you

to fast-forward the movement

of particles. If you, for instance,

create a snow effect, and the

snowflakes are created around

the outside of the room, you

want to have the room start

with snowflakes all over the

room, instead of hanging

around the outside of the room

and slowly drifting in.

To do this, you use this function

to move the particles 1 step

forward (and of course repeat

the function multiple times).

Common Emitter Functions

part_emitter_region(system0,

emitter, x, x, y, y, ps_shape_line,

ps_distr_linear);

This function is very important

with any emitter. It determines

the position of the emitter on

the room (relative to the

systems position) and how the

particles are created from this

emitter. The x and y arguments

determine the region where

particles can be created. The x

minimum and y minimum are

like the top and left sides, while

x maximum and y maximum are

like the bottom and right sides.

When the emitter releases

particles, they can only be

released within these sides. The

last two arguments determine

the shape and way of

distributing particles within the

x/y coordinates. A linear

distribution

(ps_distr_linear) means

the particles have equal chance

of being created in all areas of

the region, while a Gaussian

distribution

(ps_distr_gaussian) means

that particles have more chance

of being created right in the

middle, and quadratic ally

decrease chances as it gets to

the edges of the region. See the

diagram on the right to see how

shapes fit with regions. Finally,

an inverted Gaussian

(ps_distr_invgaussian)

has more chance of particles

being created on the edges of

the region than the centre.

Below is a list of possible shape and

distribution constants that can be used

in the last 2 arguments of this function

 ps_shape_diamond
 ps_shape_ellipse

 ps_shape_line

 ps_shape_rectangle
 ps_distr_linear

 ps_distr_invgaussian
 ps_distr_gaussian

GAME EFFECTS

5 | P a g e July, 2007 http://markup.gmking.org

G
A

M
E EFFEC

TS

Particle Effects Tutorial

part_emitter_burst(system0,emitter,p

article,10);

part_emitter_stream(system0,emitter,

particle,1);

These functions actually create

certain particles into the

emitter, using the region and

any other

specifications/customizations

the emitter has had. The first

function "bursts" a set amount

of particles into the region. This

doesn't affect how the particles

move - it simply means one

group of particles is created and

then no more are created

unless the function is called

again. The last argument asks

for how many particles to burst,

while the second last argument

asks for the ID of the particle

you'd like to burst (the variable

name that accompanied the

creation function).

The STREAM function works

very similarly, however stream

continually creates more and

more particles. Every step, in

fact, a new batch of a specified

amount of particles is created. If

you want the streaming to go

slowly, you can specify a

negative number for the last

argument; this means that 1

particle will be created on an

average of steps. -5 will mean

an average of 1 particle will be

created every 5 steps.

Common Particle Type

Functions
part_type_alpha1(particle0,1);

part_type_alpha2(particle0,1,0);

part_type_alpha3(particle0,1,0.5,0);

These 3 functions control the

alpha (transparency) values of

the particles. The first function

gives a fixed alpha value that

the particle withholds from its

birth to its death. The second

function uses a 'fade to'

technique, in which the particle

is created with the first alpha

value and fades into the second,

reaching the second as soon as

it dies. The third function is

similar to the second however it

has a second key frame for the

peak of its life.

part_type_blend(particle0,true);

This function can give the

particle additive blending (the

colors being drawn behind it are

added to the color of the

particle), or can take away the

blending if given a false value.

part_type_color1(particle0, c_red);

part_type_color2(particle0, c_red,

c_white);

part_type_color3(particle0, c_red,

c_white, c_yellow);

part_type_color_mix(particle0,

c_red, c_white);

These four functions can

determine the color of your

particle. There are other

functions but these are the

most common. The first 3

functions work just like the 3

alpha functions, in that they

give a fixed color for the birth of

the particle, and the colour

fades to the second and third

key colours throughout its life.

The fourth function gives 2

colors in which the particle

must pick a colour between the

two colours. For instance, with

c_red and c_white as the mix,

the particle can be anything

between pure red and pure

white, such as light red.

part_type_direction(particle0,0,360,

0,0);

This function gives the particle

direction in its movement. A

minimum and maximum

direction can be given, plus an

'increment' value (how much

the direction is increased by

each step), and a 'wiggle' value

(how much the direction sways

from its midpoint).

part_type_shape(particle0,pt_shape_e

xplosion);

This function allows you to pick

from the predefined shapes that

GM supplies, to apply it to your

particle. Without this the

particle is a lousy pixel (or you

can pick the particle as a lousy

pixel using pt_shape_pixel).

You can of course make your

own shapes and use the

part_type_sprite function

instead. The following shape

constants can be used:

 pt_shape_circle

 pt_shape_cloud

 pt_shape_disk

GAME EFFECTS

6 | P a g e July, 2007 http://markup.gmking.org

G
A

M
E EFFEC

TS

Particle Effects Tutorial

 pt_shape_explosion

 pt_shape_flare

 pt_shape_line

 pt_shape_pixel

 pt_shape_ring

 pt_shape_smoke

 pt_shape_spark

 pt_shape_sphere

 pt_shape_square

 pt_shape_star

part_type_size(particle0,1,2,0.1,0);

This function provides the

particle with sizes. A minimum

size, maximum size (the particle

will pick an initial size between

these two), a size increment

(how much the size increases or

decreases if a negative value is

given), and a size 'wiggle'.

part_type_speed(particle0,5,10,1,0.5

);

The function defines how fast

the particle will go. Provided is a

minimum and maximum speed

for the particle to start with, a

speed increment per step, and a

speed 'wiggle'.

part_type_life(particle0,50,100);

This function tells the particle

its life span. You can give it a

minimum life span, and a

maximum life span - both in

steps.

Global Common Functions
These functions are used in all filters,

types, and systems (unless stated

otherwise). They all perform similar

“maintenance” actions. Replace (---)

with the prefix, such as ‘system’, ‘type’,

or ‘emitter’.

part_---_destroy(system0);

Destroys (removes from the

memory) the system, filter, or type.

part_---_clear(system0);

Reverts all the customizations of

the filter, type, or system to its

default settings.

part_---_exists(system0);

Returns whether the filter, type,

or system exists.

Conclusion
I hope this gives you a bit of a better

understanding in particles. It’s quite

hard to compress all the information

about particle systems into 5 pages, and

so I’ve only explained the most

important parts. If you’re at all

interested, feel free to read my full, 17-

page tutorial from

http://gmc.yoyogames.com/index.php?

showtopic=272034, or if you want to

see some particle effects in action, you

can download the GameCave Effects

Engine from

http://gmc.yoyogames.com/index.php?

showtopic=138220

And remember, particles are very useful

but use them in consideration – just like

you would for laxatives.

Rhys Andrews

GAME EFFECTS

Clone Games

“Clone games” is a subject that

personally confuses me. On one hand it

is true what they say: people who do

clone games are just copying ideas of

other games – they’re not innovating.

But that’s only one side of the story. It is

true that people who make such games

are not innovating – but that’s only

when it comes to game design.

There’s so much more in a game than

game design, this includes graphics,

sound effects, programming, and more.

There’s also something else: and that is

that making clone games requires a skill

that no other type of games require:

copying.

To make a good clone game, the

elements of the game need to be

replicated properly – the better the

replication, the better the game.

Replication varies from using the same

effects and timing, to more complex

tasks, such as creating a flawless

battle engine, etc.

Basically, making clone games also

requires talent – just a different type

of talent.

I made it clear that there’s nothing

wrong with clone games, or people

who make them – but does an

average gamer want to play a clone

game: usually, no.

Eyas Sharaiha

EDITORIALS

http://gmc.yoyogames.com/index.php?showtopic=272034
http://gmc.yoyogames.com/index.php?showtopic=272034
http://gmc.yoyogames.com/index.php?showtopic=138220
http://gmc.yoyogames.com/index.php?showtopic=138220

7 | P a g e July, 2007 http://markup.gmking.org

G
A

M
E EFFEC

TS

Blur effects can make your game look

quite professional if used well. There

are several ways to achieve real-time

blur in GM, here we are going to

implement two: The first method is

easy, cheap and quick, and the second

one is slower and a bit more elaborated

but will yield excellent results.

First Method: Jittering
Jittering consist in taking an image and

draw it several times, in the same place,

but moving it a bit each time in a

different direction. We will draw the

image with a very low alpha value, so

that in the end, all the "stacked" images

will look like a blurred version of the

original.

So, we need a function to know where

to draw the image each time. It should

be as quick as possible to compute, you

can use any kind of distribution, even

random points. However some

functions will make the blur look better

than others. You can use this one, for

example:

angle = 0;

spiral_spread = 1;

for(i = 0;i<360*iterations;i+=1){

posx = x+cos(angle)*spiral_spread;

posy = y+sin(angle)*spiral_spread;

angle+=5;

spiral_spread+=0.1;

draw_sprite_ext(sprite_index,

image_index, blurx, blury,

image_xscale, image_yscale,

image_angle, c_white,

image_alpha/(iterations*0.3));

}

This one will draw the images following

this spiral pattern: (each point

represents the x,y coordinates at which

a image will be drawn.)

Just store in an array a few of the

drawing coordinates we produced using

our function, so that we don´t have to

recompute them each time:

//initialize jitter array:

global.jitter1[0,0] = -0.334818; //x

coordinate 1

global.jitter1[0,1] = 0.435331; //y

coordinate 1

global.jitter1[1,0] = 0.286438; //x

coordinate 2

global.jitter1[1,1] = -0.393495; //y

coordinate 2

global.jitter1[2,0] = 0.459462;

global.jitter1[2,1] = 0.141540;

global.jitter1[3,0] = -0.414498;

global.jitter1[3,1] = -0.192829;

global.jitter1[4,0] = -0.183790;

global.jitter1[4,1] = 0.082102;

global.jitter1[5,0] = -0.079263;

global.jitter1[5,1] = -0.317383;

global.jitter1[6,0] = 0.102254;

global.jitter1[6,1] = 0.299133;

global.jitter1[7,0] = 0.164216;

global.jitter1[7,1] = -0.054399;

Next, we only need to draw the image

several times (for this we will use a "for"

statement) slightly altering the drawing

coordinate using our precomputed

values:

blur = 5;

for(i = 0;i<iterations;i+=1){

blurx = x+global.jitter1[i,0]*blur;

blury = y+global.jitter1[i,1]*blur;

draw_sprite_ext(sprite_index,

image_index, blurx, blury,

image_xscale, image_yscale,

image_angle, c_white,

image_alpha/(iterations*0.3));

}

That´s it. Notice how I multiplied the

precomputed values by a "blur"

variable. That will allow us to control

the amount of jitter applied (That is, the

separation between drawing points).

Now, use the array initialization code at

the beginning of the game (you can

write the code in a script if you like, or

use it as the room creation code of the

first room), and put the drawing code in

the draw event of the object you want

to blur.

Execute it: As you can see, the quality is

good for low blur values, but when we

try to crank up the blur, it begins to look

really ugly. So it is good only if you want

a quick and subtle blur effect.

Second Method: Repeated

Linear Filtering
I found this clever idea in an OpenGL

tutorial, and I thought it could be

applied to Game Maker. It takes

advantage of a very common feature in

modern graphic cards: linear texture

filtering.

The trick is as follows: What happens if

we take a 32x32 image (for example)

and we divide its size by 2? We obtain a

16x16 image, with less quality than the

original. Now, try to scale it again to

32x32. If we have linear filtering

enabled, the computer will try to

"soften" the resulting image to make

the loss of quality produced when

scaling less apparent.

That´s the key: this automatic filtering

process is really quick. So we could

GAME EFFECTS

Real-time Blur

8 | P a g e July, 2007 http://markup.gmking.org

G
A

M
E EFFEC

TS

Real-time Blur

repeat this proccess several times (scale

the image down, scale the image up

(this blurs the image), take the result,

scale it down, scale it up...etc) to obtain

a decent looking blur effect.

Let´s begin with the code: surfaces are

ideal to implement this. We will draw

our sprite in a surface, scale it down,

draw the scaled surface on a second

surface, scale it up, then draw the

second surface on the first one, and

repeat the process.

First of all we need to initialize a few

things in the creation event of the

object we want to blur:

s = surface_create(sprite_width,

sprite_height); //main surface

saux =

surface_create(sprite_width*2,

sprite_height*2); //auxiliar surface

//clear the main surface:

surface_set_target(s);

draw_clear_alpha(c_black,0);

//clear the auxiliar surface:

surface_set_target(saux);

draw_clear_alpha(c_black,0);

surface_reset_target();

//enable linear interpolation:

texture_set_interpolation(true);

//the amount of blur we will apply:

blur_amount = 8;

Ok? So now we´ve got two surfaces

ready to use, and linear interpolation

activated.

Now we need to make sure the memory

assigned to the surfaces will be freed

when destroying the object (destroy

event):

surface_free(s);

surface_free(saux);

Now the cool part. We need to repeat a

few times the scale down, scale up

process in the step event:

//clear the main surface and draw

the sprite there:

surface_set_target(s);

draw_clear_alpha(c_black,0);

draw_sprite(sprite_index,

image_index, sprite_xoffset,

sprite_yoffset);

/*scale down (to 0.5) and draw in

the auxiliar surface, then scale up

the auxiliar surface (to 2, because

0.5 * 2 = 1, the original image

size) and draw it in the main

surface again (thus blurring the

image due to linear filtering),

repeat.*/

repeat(blur_amount)

{

surface_set_target(saux);

draw_surface_ext(s, 0, 0, 0.5, 0.5,

0, c_white, 1);

surface_set_target(s);

draw_surface_ext(saux, 0, 0, 2, 2,

0, c_white,1);

}

surface_reset_target();

Finally, draw the main surface to the

screen in the draw event:

draw_surface_ext(s, x-

sprite_xoffset, y-sprite_yoffset, 1,

1, image_angle, c_white, 1);

Execute it. As you can see, the quality is

good. It almost looks like real gaussian

blur. An higher blur value means less

speed but the same quality. So this is

ideal for very intense high-quality blur

effects (if speed isn´t that important).

Conclusion
Both methods work perfectly with

rotated, color blended and animated

sprites (although a little bit of “ghosting”

takes place when using the repeated

linear filtering method with animated

sprites).

José María Méndez

GAME EFFECTS

Original Sprite Gaussian Blur

Jittering Repeated 1f

http://gamemakerblog.com/gma

9 | P a g e July, 2007 http://markup.gmking.org

TU
TO

R
IA

LS

Cartesian & Polar Coordinates

There are two ways to describe a point

in a plane. The first way is by using

Cartesian coordinates. The second way

to describe a point is by using polar

coordinates. The following image shows

a point in the xy-plane, described both

with polar and Cartesian coordinates:

This article will explain how both

coordinate systems are used, how to

convert the coordinates from one

system to the other and most important

for Game Maker: explain the

lengthdir functions.

Cartesian coordinates

As you can see, the point is described

with the coordinates x and y, where x is

the distance from P to the y-axis and y is

the distance from P to the x-axis. This

way, we have fully described this point

in the xy-plane.

Polar coordinates

When describing a point with polar

coordinates, we don’t use the x and y-

axis. In polar coordinates, only one axis

is used, this is the 0°-axis or the “polar

axis”. 0 is the origin here. All distances

are measured from this point. Rotation

happens counter-clockwise. The point P

can now be described by the length r

(which is the distance from P to 0) and

the angle a between 0P and the 0°-axis.

This way, we have also fully described

point P.

Coordinate conversions

To convert Cartesian coordinates to

polar coordinates and vice versa, we use

an x- and y-axis. The distance |0P| is the

length r. The angle a is the angle

between the positive x-axis and line 0P.

We can use the right triangle to solve

the problem. As you can see,

x

y
a)tan(, so that means

)arctan(
x

y
a . This is a first formula

that can be used to calculate a when y

and x are known. When we use

Pythagoras’ theorem and apply it to the

above triangle: 222 yxr . Now

we have two formulas that can be used

to convert Cartesian coordinates to

polar coordinates:

222

)arctan(

yxr

x

y
a

Converting polar coordinates to

Cartesian coordinates is even easier. As

you can see:

)sin(

)cos(

ary

arx

And that’s all you need to know for

coordinate conversions.

The math behind lengthdir
The lengthdir functions are some very

handy functions if you need to know the

relative position between two points

along a single axis (either the x-axis or y-

axis). Something that is different in

Game Maker, is that the y-axis points

down: the y coordinate increases when

going down. This means that a negative

result means that the point lies higher in

the room. The above image shows a

room with 2 points in it.

The manual explains lengthdir_x and

TUTORIALS

10 | P a g e July, 2007 http://markup.gmking.org

TU
TO

R
IA

LS

Cartesian & Polar Coordinates

lengthdir_y as follows:

lengthdir_x(len,dir) Returns

the horizontal x-component of the

vector determined by the indicated

length and direction.

lengthdir_y(len,dir) Returns

the vertical y-component of the

vector determined by the indicated

length and direction.

A very appropriate question could be: “I

move length pixels in that direction,

what are my x and y position now,

relative to the x and y position I left

from?” Then lengthdir_x and

lengthdir_y would give you the

respective answers. These functions do

not necessarily return a positive value

e.g. when the value returned by

lengthdir_x is negative, the second

point lies left of the first.

An example: you need to know the

relative x position between two objects.

Let’s say the first object is called obj_1

and the second object is called obj_2.

The distance between them is 100 pixels

and the direction 60°. The following

code will return this relative x position:

a=lengthdir_x(100,60);

The variable a now contains the x

position of obj_2 relative to the x

position of obj_1. This result will be 50.

Now why is this 50? To explain this, we

need to go back to our right triangle.

Note that also in the room, we can think

of a right triangle, this time with sides

length, lengthdir_x and lengthdir_y.

Since it’s a right triangle, the previously

derived formulas are still valid. All we

need to do is replace the variables:

r = length

a = direction

x = lengthdir_x(length,direction)

y = lengthdir_y(length,direction)

Then we get:

lengthdir_x(length,direction) = r *

cos(degtorad(direction))

lengthdir_y(length,direction) = r *

sin(degtorad(direction))

Direction is in degrees. When we go

back to the example, we can now

understand why the result is 50. The

cosine of 60° is 0,5. Multiply this by r,

which is 100 in this case, and the result

is 50.

The two expressions derived above are

completely equivalent.

And that’s all there is to tell about

Cartesian and polar coordinates. I hope

this article has helped you understand

these two coordinate systems.

Bart Teunis

TUTORIALS

Make your code easier to read

You may be perfectly happy coding in a

haphazard manner however you should

always ensure that your code can be easily

read.

If you are working on a team project

having code which can be easily read is

vital. Otherwise when the game is being

put together problems will inevitably

occur when one member of the team isn't

sure what a certain section of a script

does. If you work alone you may think

that this does not apply to you, but writing

easy-to-read code will make your life

much easier. It may take you a bit longer

to write than your normal jumble of code

but it will be worth it in the long run and

could save you hours of frustration. For

example with well-documented code you

will be able to find the section you are

working on quicker and if you take a break

from coding you will be able to continue

where you left off without having to

decipher what you wrote just two

weeks previously.

If after release you come back to your

completed project and want to fix some

bugs that have been discovered, or

decide to make a spin-off or more up-

to-date version of your game you also

need to be able to understand your

previous work. Otherwise your existing

code is a good as worthless. Here are

some quick tips which, if followed,

should make your code easier to read.

Use the tab key to indent your code. It's

sitting there on the edge of your

keyboard so use it!

Add comments. In Game Maker starting

a line with '//' enables you to write a

comment, visible only when you view

the source code of your project. Use

comments to explain what your code is

doing, separate sections of code and

remind yourself what needs to be coded

where.

Give your variables sensible names. At

the time you are coding using variables

called d, f & g may seem like a good

idea and make perfect sense, but take a

look at your project a couple of weeks

later and you will be lost. Variables

such as playerhealth, topspeed and

enemytype may be longer but they will

help reduce confusion, provided you

can spell them correctly.

Blank space is your friend. Don't try to

cram your program into as few lines as

possible. Leaving a few blank lines is a

good way to separate sections of your

code.

Phil Gamble, GameMakerBlog.com■

EDITORIALS

http://www.gamemakerblog.com/

11 | P a g e July, 2007 http://markup.gmking.org

TU
TO

R
IA

LS

Binary for Beginners

It is my philosophy that the underlying

principles of our numeral system should

be taught early on to budding computer

programmers as well as to novice

mathematicians. Unfortunately, these

fundamental concepts are often

completely ignored in high schools and

introductory programming courses all

over the world and are often left

completely unexplored until the college

level. In this article I will attempt to

illuminate some of the basic concepts

behind positional notation focusing

specifically on the binary numeral

system (base 2) and its use in the

computer sciences.

Positional Notation
Most readers will likely already know

that today's world primarily uses a base

10 or "decimal" (also called denary [1])

numeral system which uses a total of

ten unique symbols (0-9) to convey

every possible real number. The most

likely reason for this is that humans

have a total of ten digits on both hands,

lending to easy decimal finger

calculations. Many readers, however,

may not realize that the decimal system

is not the only way of counting; in fact,

it is merely one of an infinite number of

numeral systems that are called

"Positional" numeral systems.

To understand positional notation one

must first known how our number

system works. The positional number

system allocates positions or places (eg.

1's place, 10's place, 100's place… etc.)

that each number can fall into. Each

position is related to the next by a

common ratio called the radix or base.

The decimal system is so named

because it uses a base of ten, and thus

the places are powers of ten (1, 10, 100,

1000, etc.). This means that the number

12110
1 can be broken down into

)101()102()101(012 which

is equivalent to: 1)102()1001(

(a 1 in the 100'ths place, a 2 in the

10'ths place and a 1 in the 1's place).

Now do you see where the other

positional numeral systems come in?

Other numeral systems simply use a

different base (and thus a different set

of digits) to express the same set of real

numbers. For instance, if we changed

the base to 3 (3 digits, 0, 1 and 2), then

1213 would be equivalent to 16 base 10

represented by: (

)31()32()31(012). I suggest

that you make sure you have a firm

grasp on this section before continuing

on with the rest of this article.

Fractal Parts
Insofar we have only seen whole

number representations of numbers.

However, it would be pertinent to now

mention the fractal part of a number. In

any positional number system directly

to the right of the one's place)(0bx

there is another place defined as

)(1 bx and another,)(2bx and

so on and so forth. These negative

places are often denoted by a separator

between the whole and fractal parts of

the number, in base 10 this separator is

called the decimal point and is

represented by a dot or comma (eg. 1.5

or 1,5). More generally this separator is

called the "Radix point." Anything after

the radix point is fractal, and anything

before it is whole. This means that we

could represent 3.1410 as:

)104()101()103(210 .

Binary (Base Two)
The binary numeral system (base 2)

uses only two digits - 0 and 1 - to reflect

all real numbers. Binary is the most

widely used number system in the

computer sciences because it can be

represented easily in hardware by the

states of on (electricity in a circuit) or off

(no, or less, electricity in a circuit).

Nearly every modern electronic device

uses binary as its native numeral

system. Each 1 or 0 is known as a bit in

binary (instead of a digit as in decimal)

and it is common to call a bit of 1 true

and 0 false.

Logical Operations
It is ever the goal of computer sciences

to create computers that can make ever

more complex decisions. The decision

making process is accomplished on a PC

by using logical operators on binary

numbers, however, logical operators

should not be confused with binary

operations (that is, operators taking two

arguments such as addition and

subtraction which are relevant for any

base).

Humans are forced to make decisions

every day: we ask ourselves if we'd

rather go outside OR stay inside, would

we like to eat pie AND ice cream OR just

pie? These simple decisions can be

emulated by a computer using logical

operators such as "And, Or, Not, and

Xor."

The "and" operator simply returns true

if both the left hand and right hand

arguments are true. For instance, 1 and

1 is true while 1 and 0 is false.

The "or" operator does exactly what it

TUTORIALS

12 | P a g e July, 2007 http://markup.gmking.org

TU
TO

R
IA

LS

Binary for Beginners Cont.

 Cont

sounds like as well: it returns true if one

or the other argument is true (ex. 1 or 1

is true, 1 or 0 is true, and 0 or 0 is false).

Xor you may not have heard of before

as it is almost exclusively used in the

computer sciences. Xor (eXclusive OR)

returns true if one or the other of two

arguments are true, but not if both are

true. For instance, 1 xor 0 is 1, 0 xor 0 is

0 and 1 xor 1 is 0.

The "not" operator is a unary operation

(that is, it takes one argument) which,

once again, does exactly what it sounds

like it does. Not 1 is 0, not 0 is 1, simple

as that.

As we can see combinations of these

operations can allow us to perform

simple logic, if statement1 is true AND

statement2 is true OR statement3 is

true then… You get the idea.

Binary Operations
The simple binary operations we use

every day (addition, subtraction,

multiplication, etc.) can also be easily

defined for the binary numeral system

using simple logical operations. If a

human were to wish to add two binary

numbers he or she could simply add

them like decimal numbers, that is:

However computers cannot reason

through this method. Instead, a

computer must use a series of logical

operations

Hexadecimal (Base Sixteen)
The problem with binary is that it is very

hard for humans to read quickly

because even a small number can have

a very large number of bits (ex. 10010 is

equal to 11001002). Ergo it is often

convenient to express binary numbers

in a slightly different (but equivalent)

way called hexadecimal. Hexadecimal,

or base 16, is very easy for both humans

and computers to read as it has a

relatively large radix which is also a

power of two making bin-hex

conversions very quick on most

computer processors. This means that

instead of having to write 10010 as

11001002 we can simply write it as 6416

(notice how few digits that took).

Numbers written in hexadecimal are

often prefixed with 0x (# in HTML, $ in

GML). As you should now realize the

hexadecimal numeral system will have

16 digits. This means that not only does

it use the standard 0-9, but also the

letters A-F where A = 10, B = 11 … F =

15.

Storage
Despite the copious amounts of

memory possessed by many modern

computers numbers must still have

some measure of consistency. In a

plaintext file for instance every letter is

stored as 8 bits which is also called a

"byte" and translates into a two digit

hexadecimal number. Two bytes (16

bits) make a "short" and 4 bytes (64

bits) make a "long." These values are

fairly consistent on most processors,

however, be warned: The byte is

processor dependant! Not all computers

use an 8 bit byte; in fact the size of

bytes ranges from 5 to 12 bits! For our

purposes though we will be using the

sizes defined above.

While storing data as a single byte is

fine for text files, it has its limitations.

Visualize a two digit number (base 10)…

if we were to store all of our data as two

digit radix 10 numbers we would find

ourselves with a very large problem:

namely, that a two digit base 10 number

can only store a number as high as 99.

Bytes are limited in the same way: they

can only store numbers as large as FF16

or 255. Of course, we are not limited to

two digits, therefore we can store

numbers in shorts, longs, quads, and of

nearly any other length (so long as it can

fit into the memory). These numbers

have higher and higher caps, just as a

three digit base 10 number can store

999, a 64 bit long can store FFFF FFFF16.

For those of you who are familiar with

the GM6 file format you will know that

it stores most of its data as 64 bit longs

for this very reason (a few values at the

beginning of the file and some in

resources are bytes).

Before we can begin to create our own

files and store data there is one more

thing we ought to know about numbers

in general. We normally write numbers

from right to left with the largest values

on the left and the smallest on the right

(ex. 10010), however, to a computer it is

often just as valid to write numbers the

other way around (ex. 00110) this is

called endianness or "byte order" and is

generally processor specific. The two

most common byte orders are little-

endian (little-end-first) and big-endian

(big-end-first). You should now know

enough to start reading and writing

binary to and from files on your own!

TUTORIALS

13 | P a g e July, 2007 http://markup.gmking.org

TU
TO

R
IA

LS

Binary for Beginners Cont.

 Cont. Conclusion
Knowing how to use binary effectivly

will aid you tremendously in your game

and software development. While we

have only touched the tip of the iceberg

this article will (hopefully) have given

you enough knowledge to get you

started in the wild world of binary and

computer logic! There are many topics I

did not cover here and wish I could have

(bit masking, radix translations, shifting

and rotating, etc.) but I'm sure that,

equipped with this knowledge they will

only be minor obstacles. Following are a

few functions in GML to help you get

started writing in binary.

Leif Greenman

TUTORIALS

/*

** Usage:

** file_bin_read_word(file,size,bigend)

**

** Arguments:

** file file id of an open binary file

** size size of the word in bytes

** bigend set to TRUE to use big-endian byte order (MSB first),

** or FALSE to use little-endian byte order (LSB first)

**

** Returns:

** an integer word of the given size from the given file

**

** GMLscripts.com

*/

{

 var file,size,bigend,value,i,b;

 file = argument0;

 size = argument1;

 bigend = argument2;

 value = 0;

 for (i=0; i<size; i+=1) {

 b[i] = file_bin_read_byte(file);

 }

 if (bigend) for (i=0; i<size; i+=1) value = value << 8 | b[i];

 else for (i=size-1; i>=0; i-=1) value = value << 8 | b[i];

 return value;

}

/*

** Usage:

** file_bin_write_word(file,size,bigend,value)

**

** Arguments:

** file file id of an open binary file

** size size of the word in bytes

** bigend set to TRUE to use big-endian byte order (MSB first),

** or FALSE to use little-endian byte order (LSB first)

** value integer value to write to the file

**

** Returns:

** nothing

**

** GMLscripts.com

*/

{

 var file,size,bigend,value,i,b;

 file = argument0;

 size = argument1;

 bigend = argument2;

 value = argument3;

 for (i=0; i<size; i+=1) {

 b[i] = value & 255;

 value = value >> 8;

 }

 if (bigend) for (i=size-1; i>=0; i-=1) file_bin_write_byte(file,b[i]);

 else for (i=0; i<size; i+=1) file_bin_write_byte(file,b[i]);

}

14 | P a g e July, 2007 http://markup.gmking.org

TU
TO

R
IA

LS

Coding Styles

Have you ever wondered if you were

coding ‘right’? Have you wondered

whether you should use ‘and’ or ‘&&’?

There is no incorrect way to program as

long as the code works the way it

should. These are some styles you can

use. You can choose to use ‘and’ or

‘&&’, ‘or’ or ‘||’, ‘not’ or ‘!’, and

whether to use brackets or not. None of

these make any difference whatsoever.

You may also choose whether to use in

statements like ‘if’, ‘while’, or ‘for’ to

use parenthesis around the arguments.

TUTORIALS

Here is rule #1: Always indent your

code! It makes your code blocks more

readable, both to you or to any team

members. You may use your ‘Tab’ key

from your keyboard, or press Ctrl + I to

indent and Ctrl + Shift + I to un-indent.

Another important thing to remember is

to leave comments in code so you and

other people can decipher them later. If

you don’t already know how to insert

comments, use ‘//’ to comment the rest

of the line, or use ‘/*’ to begin a long

comment, and add ‘*/’ at the end to

finish it. It is also possible to accomplish

your coding mission with different code.

For example, you could type

draw_circle(random(room_width),rand

om(room_height),4,true) 50 times, or

you could put it in a ‘repeat’ statement

for 50. There are many other coding

styles, but if I wrote them all down, it

would fill a whole MarkUp magazine!

Stephan

Textbar Maker

When the first version of metal-games’

Textbar Maker came out, I was pretty

critical of it. It seemed too simple and

didn’t really do anything complex. Since

that early version, however, things have

changed. Toenail initially helped metal-

games, causing the next version to have a

completely new interface, which looked

wonderful, and many more features,

some of them quite complex. Sadly the

changes since then haven’t been so

dramatic, and each new version has only

brought with it minor updates and

improvements.

Despite the apparent lack of rapid

progress, the early changes still remain

very useful and some of the more

recent developments have vastly

improved the program. The “extra”

options allow the user to create a more

dynamic image with extra depth. The

choice of fonts too makes individual

textbars more unique. Although the end

results from the program are not quite

of the quality one might want, they still

are good enough to display in signatures

or elsewhere.

There are, as ever, problems with this

program though. If you load an image, it

is automatically stretched to a square

shape. There is no way of resizing it, nor

moving it elsewhere on the textbar. The

same applies to text – it is fixed in the

position it starts in to the right of the

textbar.

All in all, I would say that this was quite

a useful application. It’s quick an easy to

use and lets you create a fairly stylish

textbar in a matter of seconds.

However, if you’re looking for a bar

which really looks good with plenty of

features, you’d probably be much

better suited with a more complex

program.

Some Information
Creator: metal-games

Get: http://xrl.us/textbar

“Grego” Tyler

R E V I E W S

The fairly

“complex”

color

palette.

http://xrl.us/textbar

15 | P a g e July, 2007 http://markup.gmking.org

G
A

M
E M

A
TH

Modulo in Computer Science

Modulo is an important operation in

both the computer sciences and in

general mathematics. It allows for the

use of complex logic in equations as well

as loops and provides the ability to

merge several equations into one

formula. This paper deals with and

outlines the use of the modulo operand

in the computer sciences and provides

several detailed examples of its use.

Modulo is a simple operand which can

be defined quite simply as the fractal

part of any ratio multiplied by the

denominator of said ratio. It is taught

first in elementary school, though not

by its proper name, and all but

forgotten in middle and high school. Its

properties are never explained to the

average student, its methods and

means never comprehended. This paper

aims to detail some of the uses of

modulo and offer a general

understanding and comprehension from

which the hobbyist programmer and

amateur mathematician can glean a

fuller understanding of the mathematics

and prose of a simple remainder.

What exactly is modulo? Modulo is the

remainder of a division, just like you

GAME MATH
practiced in elementary school, 5 mod 2

is 1 because two goes into five two

times with one left over, that remainder

is the result of modulo. Because of this,

modulo has several interesting

properties:

1. x mod y where y > x = x
2. x mod x = 0

3. x mod 1 where x∈ ℤ = 0
4. x mod y = (x + (n * y)) mod y

where n∈ ℤ
Property 4 leads modulo to often be

associated with patterns that repeat

themselves, lending it the name "clock

arithmetic" after its use in the 12-hour

clock system. For instance, 1 mod 12

will equal 1, 12 mod 12 will be 0 and 13

mod 12 will also equal 1 and so on and

so forth; because of this behavior,

modulo can be thought of as a simple,

logical, loop. Following from the

previous example, let us say that we

wished to write a function to convert

from 24-hour time to 12-hour time. We

might initially write down:

12mod)(xxf , however, this

function as we can see will return 0 for

the inputs of 12 and 24. To remedy this,

we may simply subtract and add 1 as

follows: 1)12mod)1(()(xxf .

Now, consider the set of imaginary

numbers: because the imaginary

number i can be thought of as the

square root of negative one, xixf)(

has a very interesting solution set as

illustrated in table 1:

Table 1

xi)(xf

0i 1
1i i
2i 1
3i i
4i 1
5i i
6i 1
7i i

As we can see, the values of)(xf

repeat themselves for every four values

of x. This means that we can simplify the

expression 294i down to 2i using the

equation 4modxx ii . Though this

example may not be extremely practical

from a programmer's perspective it is an

ideal example of exactly what can be

done with modulo.

Now let us look at a more practical

http://www.autumnhouseonline.com

16 | P a g e July, 2007 http://markup.gmking.org

G
A

M
E M

A
TH

Modulo in Computer Science

example. Let us say we are

programming a small graphics editor

and one of the features of this editor is

a button which shifts all pixels to the

right one pixel. We might simply add

one to the x value of each pixel, but this

will cause all pixels on the far right of

the canvas to no longer be visible.

Modulo to the rescue! Instead, we can

use the simple equation:

widthxx mod)1(where width is

the width of the drawing canvas in

pixels. See how simple that is? The same

might apply for looping a rocket to the

other side of the screen in an asteroids

style game, or when translating the

contents of a data structure such as a

grid (see Listing 1) or list.

Transformations are only one of the

many uses of the modulo operator

however. In an even more useful twist,

modulo gives us an easy way to see if a

number is even or odd (returning a

Boolean value) by simply calculating the

GAME MATH
number which we want to know modulo

two since all even numbers are evenly

divisible by two. And, because all

integers are evenly divisible by one, we

can check to see if a number has a

fractal part by simply calculating the

number in question mod 1 (if it returns

0 then the number is an integer).

Modulo can be used in this manor to

find a whole host of useful values

including whether or not two numbers

are powers of each other

01modlog xb (just make sure to

add a few error traps) and whether or

not a number is evenly divisible by

another number (as seen in the

previous examples).

As you can see, modulo is an

indispensable tool to the mathematician

and programmer alike. Modulo

pervades our culture and society, it is

found in our system of time, in our

measurement of angles, in the

mathematics of our music, and in the

complex logic that makes most software

possible. We as humans look for

repetition and patterns in everything we

do; we have set routines and schedules

which repeat themselves regularly in

accordance with a given timeframe and

even the basic elements of our universe

follow a simple periodic order. Modulo

can be used to abstract many physical

phenomenon and ergo is a cunning and

indispensable device to have in your

programming repertoire.

References
 Leijen, Daan (December 3,

2001). Division and Modulus for

Computer Scientists (PDF).

Retrieved on 2007-07-03.

 Multiple Authors. Modulo

operation. Retrieved on 2007-

07-03.

Leif Greenman

{

 // ds_grid_translate(dsid,horiz,vert)

 // This script is in the public domain and may be found at GMLScripts.com

 var dsid,w,h,sx,sy,mx,my,dx,dy,temp;

 dsid = argument0;

 w = ds_grid_width(dsid);

 h = ds_grid_height(dsid);

 sx = (((argument1 mod w)+w) mod w); // Notice the use of modulo

 sy = (((argument2 mod h)+h) mod h);

 mx = w-1;

 my = h-1;

 dx = mx-sx;

 dy = my-sy;

 temp = ds_grid_create(w,h);

 ds_grid_set_grid_region(temp,dsid,0,0,dx,dy,sx,sy); }

 if (sx>0) { ds_grid_set_grid_region(temp,dsid,dx+1,0,mx,dy,0,sy);

 if (sy>0) { ds_grid_set_grid_region(temp,dsid,0,dy+1,dx,my,sx,0); }

 if ((sx>0) && (sy>0)) { ds_grid_set_grid_region(temp,dsid,dx+1,dy+1,mx,my,0,0); }

 ds_grid_copy(dsid,temp);

 ds_grid_destroy(temp);

}

Listing 1: Translation of a grid using the Cartesian coordinate system

http://www.cs.uu.nl/~daan/download/papers/divmodnote.pdf
http://www.cs.uu.nl/~daan/download/papers/divmodnote.pdf
http://www.cs.uu.nl/~daan/download/papers/divmodnote.pdf
http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Modulo_operation

17 | P a g e July, 2007 http://markup.gmking.org

M
O

V
EM

EN
T

Smooth Online Movement

Introduction
The other day I was browsing the Game

Maker Community, testing some of the

online games and engines made with

Game Maker. A quick look at most of

the games and engines being coded

helped me come to the conclusion that

the community as a whole is still very

new to the world of online

programming. This is made evident in

part by the lack luster games being

programmed that make little to no use

of a widely used technique called Dead

Reckoning. This technique is used to

save on bandwidth and lag in an

attempt to guess what certain info is

depending on data already received.

The example I am about to talk to you

about is a form of Dead Reckoning. It

calculates the movement and fluidity of

a player depending on certain data that

has already been received. This is

MOVEMENT

especially useful for lowering the

amount of bandwidth used, and offering

a much more professional and lag free

experience.

Constants
The main idea behind this example is to

communicate between players with

simple variables which then translate

into movement. We start this off by

setting up constants as a form of packet

title. The packet title is simply used to

give each packet it’s own ID. By doing

this, both client and server understand

what data you are trying to send, and

can read it accordingly.

Sending Data
Now that our constants/packet titles are

set up, we can begin the process of

sending data to the server depending on

what buttons have been pressed. For

example, if the player presses the left

keyboard button, we send a packet to

the server which basically tells it what

button we’re pressing. Afterwards, it

updates our x and y position to re-sync

the player. Now that the server is up-to-

date on what the player is doing, it then

forwards the received packet onto all

clients connected to the server. These

clients then do the same thing as the

server by reading the data sent.

Transforming Data into

Movement
Now that we are successfully sending

packets to the server and clients that

Dragger DLL

The dragger DLL allows

windows to be dropped inside a

Game Maker window. A single

file or multiple files could be

simultaneously dragged into a

Game Maker window. The DLL

can figure out the number of

files being dropped into the

window by using an index (0-

based). The DLL download

comes with an example in a

GM6 format.

Get it now!
http://xrl.us/draggerdll Q

U
IC

K
 R

EV
IE

W

http://xrl.us/draggerdll

18 | P a g e July, 2007 http://markup.gmking.org

M
O

V
EM

EN
T

Smooth Online Movement

contain the info to what button the

player is pressing, we can begin the

process of transforming these variables

into simple movement of the player. An

example of this in step-by-step order:

1. Player presses left keyboard

button

2. Packet is sent containing info

for left keyboard button

3. Packet is received and read in

the form of simple variables

4. The game checks those

variables and translates them

into movement

As you can see, it is a pretty simple

process. One in which only a little

common sense is required to create a

highly used form of Dead reckoning.

MOVEMENT

Physics
Unlike in online games where player

movement is done by constantly

updating the x and y position of the

player, we must now program in some

simple physics for the dummy player so

that he acts in a manner that mimics

that of the actual players key presses.

We do this by giving him some collision

checking, gravity, etc. This is a fairly

easy part; just remember to make these

physics exactly the same as the ones

affecting your own player. If not, it can

create quite a bit of lag.

The End
Hopefully by reading this little summary,

you now have a decent insight on what

it takes to program a more professional

online game. If you have any questions

regarding the technique or the example,

please e-mail me at

jakethesnake3636@hotmail.com. For a

look at a full-fledged MMO using this

technique, please visit

nightfallonline.co.nr or stick-online.com.

Jake

Promoting your Game to the GMC

To start off with I will clarify that in this

article the “Game Maker Community”

refers to people who use, or are familiar

with, Game Maker and not the name of

the official forums. It is of course possible

to promote your game outside of the

community, and this is something which

more and more people are beginning to

do, however this article is only about

promoting ‘internally’.

Forum signatures are a great place to
advertise since it is essentially free space,
and if you are an active poster it will
quickly spread your message across many
different topics.

You can obviously start a topic promoting
your game in the Game Maker creations
section of the official forums, and you
could also post your website in the
Website Announcements section to
coincide with your release. There isn’t just
the one forum though, if you are a
member of any other forums which focus
on Game Maker or game development

you should also try the same there. For
example many Game Maker ‘teams’ have
their own forums, you can easily copy and
paste the same post onto a number of
these, although I don’t condone spamming
of any kind.

Uploading at community based sites such
as 64digits won’t be a bad thing either, nor
will posting your game at YoYo Games,
where there is big audience.

Affiliating (link exchange) with other sites
is a good idea but you only get a small
canvas on which to show your message by
using this method. If your banner will
appear at the bottom of a page alongside
hundreds of others this will also be pretty
useless (says the man who runs a Game
Maker affiliation service). Textual links
may be more beneficial, particularly when
it comes to Search Engine Optimization,
however this shouldn’t be your primary
concern when promoting to the
community.

I believe it would be more valuable to try

to get your game reviewed or previewed
by one or, even better, both of the Game
Maker magazines. Provided you have put
a sensible amount of time into your game
your review should in effect be free
advertising and you will also get some
constructive criticism on top of that.
These magazines also give free
advertising in exchange for articles so if
you get writing about something Game
Maker related, not just shameless
promotion, and submit it to one of them
you will probably be given a quarter page
ad or something similar. From my
experience ads in MarkUp do get clicked
and do get results.

As well as choosing the right place to
advertise your message also has to be
effective, you will only have a limited
amount of space so you need to make the
most of it and make sure you have got
everything right. Sloppy spelling and a
misspelt URL won’t do you any favors.

Phil Gamble,

GameMakerBlog.com■

EDITORIALS

http://gamemakerblog.com/gma
http://gamemakerblog.com/gma
http://gamemakerblog.com/gma
http://www.gamemakerblog.com/

19 | P a g e July, 2007 http://markup.gmking.org

TU
TO

R
IA

LS

Multiple programs can link to a DLL

at the same time

Fig 1

Introduction to DLL-making

Along time ago in a land far, far away,

there was a programmer. This

programmer had a project that had

many, many functions which needed to

be shared between several source files.

He toiled away, copying and pasting

every time he made a slight change to

the functions in one of his programs.

Finally he decided enough was enough

and a brilliant idea came to him: thus

the DLL was born! Before we start, I

must warn you, DLL's are not for the

faint of heart, to understand this

tutorial you must be familiar not only

with GML, but you must have some

general C++ knowledge as well. If this

has not deterred you, read on!

What is a DLL
The Dynamic Link Library, or DLL, is a

collection of pre-compiled code that can

be linked with and executed

dynamically at runtime (as opposed to a

static library which can only be linked to

at compile time). DLL's are one of the

programmer's most useful tools; they

allow for easy management of shared

code between many applications and

allow you to update code in one spot

and one spot only without having to

recompile your entire project (See

Figure 1).

The Basics
Game Maker supports limited linking

with DLL's compiled in another language

such as C++ or Delphi. DLL's have

several advantages over GML code: first

of all they are compiled; this lends them

to much faster execution speeds than

scripted GML code. Secondly, you can

do a lot more in a real programming

language which means that DLL's can

add functionality that was previously

impossible to Game Maker. Though

DLL's can be written in a variety of

different programming languages, in

this article we will be focusing on

creating DLL's in C++. The concepts

covered in this article however should

apply to most any language in which DLL

creation is supported. What follows in

Table 1 is a detailed comparison of GML

code as opposed to compiled C++ code.

This highlights some of the advantages

and disadvantages of using DLL's as

opposed to standard GML scripting. If

you want to skip these small technical

details and jump strait to programming

your own DLL you may want to skip

down to "Programming DLLs" on the

next page. There are of course some

discrepancies in the table: dynamic

typing is not necessarily a pro for GM,

but for our purposes it will be, also ease

of use and learning curve are the

opinion of the author.

Data Types
Now down to business. As you can see,

DLL's offer several advantages over C++

TUTORIALS
code. One of the many advantages of

using DLL's is that C++ has many more

data types than GML and can define

custom data types which are just as

valid (to C++) as the standard types.

Unfortunately, GM only supports two of

the data types which C++ is capable of:

Null terminating strings, and real

numbers (doubles). Now, when I say

GM only supports these data types I

mean just that. Your DLL can define its

own data types or use as many others

as it wishes, however, GM can only

supply the DLL with doubles and strings,

and the DLL can only return doubles and

strings to GM. Let’s take a look at each

of these types and see exactly what kind

of data you can store with them.

Doubles, or real numbers, are signed 64

bit double precision floating-point

numbers that can store values in the

range of 4932102.1 x (19 digits) and

have a precision of about 8 bytes (on

most computers). They are initialized in

C++ using the keyword "double".

Null terminating strings on the other

hand are lists of characters that only

end when the escape sequence "\0"

(null) is reached. I prefer to use the

LPSTR class found in the standard

windows includes (windows.h).

Programming DLLs
Open up your favorite editor, prepare

your favorite compiler or GUI, and let’s

get started writing a DLL for Game

Maker! Create a new project or file and

set up your compiler to compile a DLL

(this is compiler specific, so you'll need

to read the documentation if you don't

know how to do this). Now let's create a

simple function to add two numbers in

20 | P a g e July, 2007 http://markup.gmking.org

TU
TO

R
IA

LS

Introduction to DLL-making

C++. We will call this function dAddNum

and it might look something like this

(remember that we can only use

doubles and strings for arguments and

return types):

double dAddNum(double dNum1, double dNum2)

{

 return (dNum1 + dNum2);

}

There is still one problem though, if we

compile a DLL and try to execute this

function from Game Maker it will not

work. This is because we have not told

the DLL to export the function to Game

Maker. To do this we must add the

following to the beginning of our

function right before the declaration:

extern "C" __declspec(dllexport)

Rather than add this before every

function, however, I prefer to define a

single keyword that will act as a stand in

for this line of code. This makes our final

addition function look something like

the one found in Listing 2.

Strings on the other hand are a little

more complicated to pass and return.

C++ does not define a built in class for

storing strings, instead we have to use

either an array of bytes (char) or one of

the many string classes found in the

standard C++ includes. I like the LPSTR

class which can be used by simply

including windows.h with your DLL.

That's about it for defining functions

from within DLL's! Of course, you can do

much more advanced things with your

functions than just perform basic

calculations (which are more suited to

GML).

GM supplies a certain function that

allows your DLL's to deal with the game

window directly. This function is called

window_handle() and (counter

intuitively) returns the handle of the

game window. This handle may be used

in your DLL's to modify the windows

position, attributes, contents, styling,

etc. However, this is not a C++ tutorial,

and we will not be covering the means

and methods of window manipulation

here; for an example see the code

example at the end of the article. The

final topic we must cover before we can

really be expert DLL creators is that of

calling conventions. Game Maker

supports two calling conventions: cdecl

and stdcall. To understand the

difference between these two methods

and what they do, we must first know a

little bit about how C++ calls its

functions. C++ passes all arguments to

functions to a block of memory called

the "stack." The stack is a low-level data

structure that functions exactly as you

would expect a stack to, when you call a

function its arguments are put (or

"pushed") on the top of the stack in

reverse order. When the function

returns, the arguments are "popped"

from the top of the stack on a first-in-

first-out basis. This means that

whatever the last thing you placed on

the stack was will be the first thing to

come back off of the stack.

Cdecl is the default calling convention

for C programs and global functions in

C++ programs. When the calling

convention is set to cdecl the caller

(Your game) is responsible for popping

data from the top of the stack. This is all

done automatically and you probably

don't need to worry about it.

Stdcall on the other hand requires that

the callee pop arguments from the

stack. This is the default convention for

the Win32 API. Because the callee is

responsible for removing its arguments

the stdcall method is slightly faster,

however, it prevents the use of the …

operator for sending runtime defined

arguments.

If you're uncomfortable choosing a

calling type, better make it cdecl.

Using the DLL
Now finally comes the fun part:

implementation, actually using our

newly created DLL in Game Maker!

Before GM7 we had to use a series of

functions to initialize the DLL, define the

functions, and call the functions. GM7,

however, does away with all that and

Table 1 GML C++

Dynamic Typing Yes No
Compiled No Yes
Flexibility Worse Better
Speed Slower Faster
Dynamic Resource Access Yes Not Allowed1
Memory Pointers No1 Yes
Ease of Use Easier Harder
Custom Data Types No Yes
Learning Curve Smaller Steeper

TUTORIALS

21 | P a g e July, 2007 http://markup.gmking.org

TU
TO

R
IA

LS

Introduction to DLL-making

gives us a single mechanism for the

inclusion of a variety of file types: The

GEX file.

The GEX file will act as a container for

our DLL file that will export it to a

temporary directory at the start of the

game, call any initialization scripts that

need to be called, define every function

within the DLL, and finally, when

everything is all done, call any tear

down functions and release the DLL

from memory. Unfortunately, you

cannot create extensions from within

Game Maker itself. To create your

extension you will need the free utility

found here. From within the extension

maker you can simply click "Add DLL" to

import your DLL and then define your

functions by adding them to the

functions list (see Figure 2). Now, on the

file menu, click "Build Package…" to

compile your project into a single GEX

file which can be imported into Game

Maker. To execute your DLL's functions

all you have to do is call the name of the

function or the alternate name you

defined in the extension builder from

within Game Maker!

Conclusion
You should now know enough about

DLL creation to get out there and start

creating some basic DLL's! Remember

though, DLL creation is a very advanced

form of programming which can be hard

to debug. Before you start trying to

make your own GMSoc or Xtreme3D,

make sure you know enough about

calling conventions, memory allocation,

and data types to prevent memory leaks

and buffer overflows which can lead to

security vulnerabilities in your games.

Below is a list of resources which you

may find useful when developing your

DLL's, good luck!

Resources
 Microsoft Visual C++ Express

 Visual C++ Developers Center

 Dev-C++

 MinGW

 DLL Programming Resources on
the GMC

 C++ for Dummies

 Game Programming Gems

Footnotes
1It is unfair to say that the inability of

C++ to access GM's resources is a con.

After all, this is the fault of Game

Maker, not C++

2GM does not define pointers but they

can be emulated for resources.

Leif Greenman

#define export extern "C" __declspec(dllexport) /* __stdcall if we will cleanup */

#include <windows.h>

#define MAIN_EDIT 101 // Just an edit ID

export double dAddNum(double dNum1, double dNum2)

{

 return (dNum1 + dNum2);

}

export double dTextBox(double dX, double dY, double dWidth, double dHeight, double dWinHandle)

{

 HWND hwnd = (HWND)(int)dWinHandle;

 CreateWindowEx(WS_EX_CLIENTEDGE,

 "EDIT",

 "Hello World",

 WS_CHILD |WS_VISIBLE |WS_VSCROLL |WS_HSCROLL |ES_AUTOHSCROLL |ES_MULTILINE,

 (int)dX,

 (int)dY,

 (int)dWidth,

 (int)dHeight,

 hwnd,

 (HMENU) MAIN_EDIT,

 GetModuleHandle(NULL),

 NULL);

 return (0);

}

TUTORIALS

http://www.yoyogames.com/extensions
http://msdn.microsoft.com/vstudio/express/visualc/
http://msdn2.microsoft.com/en-us/visualc/default.aspx
http://www.bloodshed.net/dev/index.html
http://www.mingw.org/
http://gmc.yoyogames.com/index.php?showtopic=126717
http://gmc.yoyogames.com/index.php?showtopic=126717
http://www.dummies.com/WileyCDA/DummiesTitle/productCd-0764568523.html
http://www.gameprogramminggems.com/

22 | P a g e July, 2007 http://markup.gmking.org

TU
TO

R
IA

LS

Level Editors pt. 1: Format

A level editor in a game is considered a

massive feature by many, and indeed it

is. The reason developers add level

editors to their games are different:

while some times it is done just as an

extra, in other times there could be a

compelling reason.

Take for example my most recent

project, which involves a crime scene

investigator trying to solve cases –

different cases are represented as

different levels and in order for my

game to be successful; those cases need

to be really interesting: and that’s

where I fail! That’s why I decided to

create a level editor so that others could

make interesting levels for the game,

and later packed as true levels.

Methods of Creating Level

Editors

METHOD 1: The famous

execute_file()
The most insecure of all methods on

earth is execute_file! What happens is

that the code of creation of each object

is directly added as GML code to a file –

this includes creating different instances

of objects, setting variables for these

objectives, etc.

As it will be discovered later, the method

isn’t so flexible, might need a lot of hard-

coding (which means it would make it

difficult to update), and is simply

completely insecure – someone could

make a level that deletes your system

files! Nevertheless, we will briefly discuss

the different ways to create such a

method.

By using the WITH statement

A great function to do this would be a

with(all) statement. In that statement,

something such as:

code+="instance_create("+string(x)+",

"+string(y)+",

"+string(object_name(object_index))+"

);";

To set more variables to the created

object, obj= could be added before the

code, to create something similar to this:

code+="obj=instance_create("+string(x

)+", "+string(y)+",

"+string(object_name(object_index))+"

);";

Now, to define variables such as my_life

for that objects, a simple line of code

could be used:

obj.my_life=79;

The with statement could also include a

switch() statement, where the

object_index of each object is tested –

and accordingly, different types of

variables could be added to the object.

Embedding code directly into

objects

Another alternative could be to directly

add code to an object’s create event – so

TUTORIALS
that whenever it is created in the level

editor, it adds some GML code to a

global variable about its creation,

position, etc. While this could prove

more flexible at some times than using

the with statement, it also creates a

problem: destroying the object.

However, using string replacement

functions, or by simply adding a

with(…){instance_destroy();} line of

code could solve that problem.

METHOD 2: A relatively more

secure alternative to

execute_file
Instead of executing a file, how about

executing a string? Sounds stupid, but a

file with the same type of GML code as

shown above could be encrypted, read

by the actual game, stored in a string,

decrypted, and executed.

That could make it safer, but decryption

has been proven to be a weak form of

protection – especially when malicious

coding could still be injected in the file

after the encryption has been cracked.

23 | P a g e July, 2007 http://markup.gmking.org

TU
TO

R
IA

LS

Level Editors pt. 1: Format

METHOD 3: A special file

format
There is no doubt making a special file

format is the most secure and efficient

method of storing level data. The idea is

that values are stored in specific

locations, and are separated by

different separator characters (example:

CSV). This way, the game could read a

value, either keep it as a string or turn it

to a real value using the real() function

– and setting a variable to that value.

This is the method I personally use for

my project, and this is the method we

will further discuss in this article.

The format
We could take advantage of Game

Maker’s ability to read only one time at

a row. Different pieces of data such as

different objects to be added to the

room will be stored in separate lines –

this means each

file_text_read_string() carried out

would read a single line, and therefore a

single object.

Since most games have different types

of objects, each with different variables

it’d be better if object names are

defined at first.

Character Separated Values

vs. Fixed Length Record
On one hand, reading and separating

Character Separated Values is not a

native function in GM, and coding such

thing in GML could be difficult – and at

the same time, Fixed Length handling is

easy in Game Maker, as functions like

string_char_at() and string_copy()

could easily create parts of a string that

lies within a certain position.

However, using fixed length records

mean that there should be a maximum

length for all records, and it also means

that the file size would be much larger

than variable-length records.

Character Separated Values succeed in

every way when compared to Fixed

Length Records except for the fact that

they cannot be natively and directly

used in GM. However, GMLscripts.com

has come to the rescue – as shown in

Issue 4, script of the month – and gave

us the explode_string function.

Which separates a string into multiple

strings in an array.

Separators

TUTORIALS
Though the use of commas, colons, or

semi-colons is generally considered

okay, many variables might store text –

and text generally contains all these. For

that reason, I suggest to use an

uncommon character as the separators,

I use (`), (^), (|), etc.

To make things “nicer”, I often use two

separators: one to separate the object

name from the rest of the variables, and

the other to separate the different

variables from each others.

Here’s an example of what a file could

look like:

EVIDENCE`96^336^blood_2.png^Evidence

^Sample evidence text.^/*none*/

EVIDENCE`96^144^blood_2.png^Evidence

^Sample evidence text. ^/*none*/

TILE`128^144^0^0

TILE`160^144^0^0

TILE`192^144^0^0

Reading the Format
Using two separators means that

readings could occur on multiple stages.

In the first stage, the strings are

that need to be defined, it is a

good idea to include the object’s

name as the first part of each row,

to define which object is being

created.

For example, a certain object

might only need two variables

defined, while others might need

several ones – that could

introduce array index out of

bounds or other types of errors so

AStar DLL

The AStar DLL is one of several

path finding DLLs based on the

effective A* algorithm. It allows

for fast real-time path finding,

so that the object could move

around blocks and other

restricted areas (obstacles) to

reach its target position.

It is very effective, and allows

for awesome AI!

Get it now!
http://xrl.us/astar Q

U
IC

K
 R

EV
IE

W

http://xrl.us/astar

24 | P a g e July, 2007 http://markup.gmking.org

TU
TO

R
IA

LS

Level Editors pt. 1: Format

separated into 2x1 arrays.

The first explode_string() function will

separate the object name from its

variables (table 1, overleaf).

Now a tile only needs to have 4

variables read, while the evidence

object needs six. So, a switch statement

is done, if the variable SPR[0] is

"EVIDENCE" all 6 indices of the array are

read, but if SPR[0] was "TILE", the final

two indices are not read – as reading

them causes an error.

A second explode_string() function is

performed, this time to separate

different variables from each other

(table 2).

Writing the format
The act of writing the format by the

level editor isn’t hard anymore. with()

statements could be carried out, but

instead of using all we use a specific

type of object each time. So, we’ll have

a with(obj_tile) and a

with(obj_evidence), each of them adds

the name of the object, along with

character separated variable values.

Conclusion

In this issue, you learnt about the

different ways of storing information

about levels. Next issue, we’ll talk about

the different methods of creating a level

editor’s interface.

This covers the separation of the items

of the level from the actual interface,

ways of making a good interface, etc.

Eyas Sharaiha

SPR[0] SPR[1]

EVIDENCE 96^336^blood_2.png^Evidence^Sample evidence text.^/*none*/

EVIDENCE 96^144^blood_1.png^Evidence^Sample evidence text.^/*none*/

TILE 128^144^0^0

TILE 160^144^0^0

TILE 192^144^0^0

PART[0]

PART[1]

PART[2]

PART[3]

PART[4]

PART[5]

96 336 blood_2.png Evidence Sample evidence text. /*none*/

96 144 blood_1.png Evidence Sample evidence text. /*none*/

128 144 0 0

160 144 0 0

192 144 0 0

Table 2: Second stage

Cage Match no more.. again?

Though not directly related to

development – the Game Maker

Community’s Cagematch (once seen as a

method of showcasing one’s work) – has

now been suspended until further notice.

The Cagematch used to be run by Dex in

the old days, until he became too busy to

handle it, and eventually the Cagematch

ceased to exist.

Not-so-long-ago, Ablach Blackrat took

over, and revived the long-liked tradition

of a weekly Cagematch – until recently.

The Cagematch was suspended after

about 100 mysterious votes came from

nowhere to one of the games. However,

the creator of the game insists he has

nothing to do with it.

It now appears that a hidden iframe or a

similar trick in a certain site was placed,

which forced users to automatically

vote for that certain game.

Following these events, the Game

Maker Community moderation staff

decided to suspend the Cagematch until

further notice.

It is not known whether the Cagematch

will reopen in the near future, and it is

also not known whether it has only

been suspended for inspections or not.

Eyas Sharaiha

N E W S

TUTORIALS
Table 1: First stage

25 | P a g e July, 2007 http://markup.gmking.org

EN
G

IN
E

GM Physics

To start, let’s say that you’ve made a

game. Someone plays it, and complains

about the incorrectness of the physics in

a certain part of the game. As a

developer, how can you ensure that all

the physics in your games is accurate,

which also aids you in making some

pretty cool games too? The answer can

come to you in a single package,

GMPhysics.

Introduction
So, when you open it up, you see a

bunch of DLLs and a couple of example

games. Look through them, and when

you’re done playing, open up the

platform tutorial included.

Before we start making physics, we’re

going to have to learn about how it

works. Clear the room of everything but

the control object (it should be

displayed as a blue question mark.)

Then, open up the control object in the

object editor. Double click on the code

in the Create event. Something like this

should pop up:

{

init_physics();

create_body(0,room_height,STATIC,SHA

PE_PLANE,90);

}

So, let me explain this. init_physics();

simply initializes physics to run. The

next piece of code is a bit more

complicated. We’ll take it step by step.

The function, create_body(), is pretty

self-explanatory. The first two

arguments are x and y. So, this creates a

body at the bottom-left corner of the

room. The next argument is the density.

This can be any positive number (for a

good scale, use 1 as a small chapter

book, 3 as a dictionary and 5 as a

medium-sized rock.) But think of it this

way. If the body is just sitting on the

bottom of the screen, it will fall off. But,

if you put STATIC in its density, it

becomes ground. Now, nothing will

affect it, but other things will be

affected by it. The next argument is

SHAPE_PLANE, which indicates that the

shape is a plane, and the last argument

is the argument specific to that shape,

which is direction. Unlike Game Maker,

the directions are as follows: 0° is up,

90° is right, 180° is down, and 270° is

left. Because the plane is on the left side

of the screen, we want it to stretch until

it reaches the other side, the right.

Different shapes have different

arguments, too. For example, a ball’s

only argument is its radius, and a

rectangle’s two arguments are its width

and height.

ENGINE

In every step, you’ll want to update the

simulation. So, open up the code in the

step event and you should see the

following:

 Easy Inventory

“Easy Inventory” is a set of

Game Maker scripts designed

to allow you – the developer –

to add inventories to your

game. This is particularly useful

in RPG games like Diablo, etc.

It allow for the drawing and

manipulation of the inventory

and the items in it using simple

lines of code.

Get it now!
http://xrl.us/inventory Q

U
IC

K
 R

EV
IE

W

http://xrl.us/inventory

26 | P a g e July, 2007 http://markup.gmking.org

EN
G

IN
E

GMPhysics

{

 update_bodies();

}

This updates it every step, and this is

very important.

The last thing you’ll need to look at is

the Game End event. In it should be

something like the following:

{

 release_physics();

}

That simply gets rid of the physics. You

don’t want it to be calculating nothing

after you quit, do you?

Well, that’s it. You now know how to

make a static body and maintain your

physics correctly. Now here comes the

fun part: making all those bouncing balls

and falling blocks.

Making Bodies
So, create a new object called obj_box

and give it a simple 32x32 box sprite.

Make sure that the origin of the sprite is

in its center! This is very important!

Put a Create event in it, then put the

following piece of code in its create

event:

{

h = create_body(x, y, 1, SHAPE_BOX,

32, 32);

}

From what you’ve learned before, this

shouldn’t be too hard. It creates a box-

shaped object with a width and height

of 32 (hence the sprite.) It creates it at

its x and y, and gives it a lightweight

density of 1 (you can change this, but

don’t make it past 10. It’ll be too heavy.)

We assign it to a variable so we can

easily access its physical body later.

Before it does anything, you also need

to make it update itself. So in the Step

event, put in this:

{

 object_update(h);

}

That simply updates it. The last thing

you’ll want to do is make it so that when

its Game Maker instance is destroyed,

the physical body will get destroyed too.

So, make a Destroy event, and in it put:

ENGINE

{

 destroy_body(h);

}

Now, go back to the controller object.

Create a mouse Global Left Pressed

event, and in it put the following piece

of code:

{

instance_create(mouse_x, mouse_y,

obj_box);

}

That makes an instance of object box at

the mouse x and y, you should be

familiar with this if you have coded

before.

Now, run the game and click anywhere.

If you haven’t made any mistakes, it’s

quite fun, isn’t it?

Making Joints
Joints are pretty easy to make, and can

provide you with pretty amazing results.

There are three types of joints, which

will all be explained.

The first type is a fixed joint. Fixed joints D3D9 Wrapper

This Game Maker DLL is a

wrapper of the latest version of

DirectX 9’s Direct3D library.

Game Maker itself incorporates

features such as rotation, etc.

from DirectX 8 – but doesn’t

even use it to its full potential.

This DLL – a work in progress –

seems as if it will become

faster, and give us some

interesting features in the near

future. A GMK example is

included.

Get it now!
http://xrl.us/d3d9w

Q
U

IC
K

 R
EV

IE
W

http://xrl.us/d3d9w

27 | P a g e July, 2007 http://markup.gmking.org

EN
G

IN
E

GMPhysics

are very easy to create, and link two

objects together. To make one, use this:

{

create_joint(something.h,

something.h, JOINT_FIXED);

}

To make the joint work correctly, switch

the two ‘somethings’ two the objects

you want to join. The “h”s are there to

make sure it links the bodies and not

the instances. For example, if you

wanted to link together our obj_box and

another obj_ball, you would use:

{

create_joint(obj_box.h,obj_ball.h,JO

INT_FIXED);

}

Note that you have to be careful when

using object names. Creating more of

that kind of instance could mess it up.

Remember that you can assign

instances to variables, too. Kind of like

this:

{

firstvar = instance_create(100, 100,

obj_box);

secondvar = instance_create(200,

200, obj_box);

create_joint(firstvar.h,

secondvar.h, JOINT_FIXED);

}

Take note that this assumes firstvar

and secondvar have already created

their bodies. If you put a create_body();

event in their create event, it should

work fine.

The next kind of joint is a hinge joint.

Hinge joints are slightly harder to

understand.

To create one, use the following piece

of code:

{

create_joint(firstvar.h,

secondvar.h, JOINT_HINGE,

get_body_x(firstvar.h),

get_body_y(firstvar.h));

}

The first three arguments link the two

bodies with a hinge joint. The last two is

where the joint is anchored. If you want

B to swing around A, anchor the first

one. If you want A to swing around B,

anchor the second. (Usually this won’t

matter unless you’re using a static body

as one of the objects.)

The last kind of joint is a slider joint.

Slider joints are usually the hardest type

of joints to understand. Here’s an

example of the code used for creating a

slider joint:

ENGINE
{

create_joint(firstvar.h,

secondvar.h, JOINT_SLIDER,

get_body_x(firstvar.h),

get_body_y(firstvar.h), 180);

}

Everything from the hinge joint is

included. The last argument, which is

new, is the direction in which the slider

joint points.

Conclusion
Well, that’s it. You now know how to

create and maintain physics, create

static bodies, create bodies, and create

joints. Of course, this isn’t the end of

GMPhysics. It can be used to create

rays, water, springs, wind, magnetism,

soft bodies, and a whole lot more.

Here’s a hint: See what happens when

you create a bunch of spheres and link

them all together from 1 to 2, 2 to 3, 3

to 4, and so on.

Sean Flanagan

Dialogue System

This dialogue system imitates

the one present in Baldur’s

Gate. This includes scrollable

dialogues, with the ability to

use the script in conjunction

with room views (early versions

require editing, latest version

has it native).

Features include multi-line with

setting line limits and

conjunction with scrollbars and

scrolling buttons.

Get it now!
http://xrl.us/dialogue

Q
U

IC
K

 R
EV

IE
W

http://xrl.us/dialogue

28 | P a g e July, 2007 http://markup.gmking.org

ADVERTISEMENT

29 | P a g e July, 2007 http://markup.gmking.org

EX
TEN

SIO
N

GMbase is a relatively new site dedicated to hosting the

web's largest archive of freely available extensions for

Game Maker. Upon learning of this fantastic resource I

couldn't resist submitting my most useful extension

package - HexScripts. Originally a collection of scripts - as

the name implies - this package extends Game Maker's

built in binary capabilities to include the reading and

writing of big and little endian formatted integer words

of any length. It also adds functionality for converting

between different bases (such as binary and decimal)

and in addition includes a function to move the position

of the document relative to the current position.

#define file_bin_read_word(fileid,

size, bigend)
file_bin_read_word reads an integer word of the given

size (in bytes) from an open file stream in little or big-

endian byte order.

#define

file_bin_write_word(fileid, size,

bigend)
file_bin_write_word does exactly what it says, it writes a

little or big-endian formatted integer word with the given

size (in bytes) to an open binary file.

#define radix_change(number,

old_base, new_base)
The radix, or "base" of a number (ex. Decimal, binary, or

hexadecimal) is notoriously difficult to change with

conventional mathematical methods. Rithiur however,

takes a different approach and uses strings to change the

base of any given number. I obtained permission long

ago to use this script, however, credit to Rithiur should

probably be given.

#define

file_bin_seek_relative(fileid,

position)
An extension of the file_bin_seek script built into Game

Maker, file_bin_seek_relative seeks from the current

position in a file instead of the absolute position. This

means that if you seek for a position of 5 from byte 10, you

will move to byte 15 instead of byte 5.

Conclusion
Besides the functions, there are also over 60 constants to

help you when defining large bases or data types! The

bases follow the "nb_*" naming scheme (eg. nb_bin,

nb_dec, nb_quin, nb_hex etc.) while the data types follow

the "dt_*" convention (eg. dt_byte, dt_long, dt_quad,

dt_short)

Download the extension
http://gmbase.cubedwater.com/view_ex.php?ex=118

Leif Greenman

EXTENSION

Powered By:

Extension of the Month

Tile Optimizer

Q
U

IC
K

 R
EV

IE
W

 Tile Optimizer is an amazing script used

to optimize tile usage in Game Maker –

leading to a speed boost.

The author says the tile optimizer could

increase the FPS of a game (provided it

uses a sufficient amount of tiles)

dramatically – a figure that could rise up

to (but not always) an 820% FPS gain.

The script is very simple – however the

author warns us not to use this script

unless we have about 30 tiles in a room,

or more, otherwise the script would not

be as effective.

The example is provided in the GM6

format. You must have at least a

registered version of Game Maker 6.

Get it now!
http://xrl.us/tile

http://gmbase.cubedwater.com/
http://gmbase.cubedwater.com/view_ex.php?ex=118
http://xrl.us/tile

30 | P a g e July, 2007 http://markup.gmking.org

SC
R

IP
TS

List Saving and Loading
Though “lists” as a concept – is a great thing for Game Maker

developers like me, a problem it has is that it cannot be saved

with the regular game_save() function.

This means that other methods should be used to save and load

lists.

Game Maker has its own set of function that allows you to store a

list to a string and later read it. These could be written to files to

be saved or loaded.

However if the creator wanted to store lists in a readable and

editable form (by humans), the best way to store it would be

using this set of scripts:

Save Script
/*

** Usage:

** ds_list_save(dsid,filename,separator)

** Arguments:

** dsid ds_list to be saved

** filename file path to save the list to

** separator string used as separator between

elements (optional)

** Returns:

** 0 if successful, or (-1) on error

** Notes:

** If separator is not given, each list element will

be on a separate line.

** If separator also appears within data, the list

will not load correctly.

** GMLscripts.com

*/

{

 var dsid,filename,sep,fid,i;

 dsid = argument0;

 filename = argument1;

 if (is_string(argument2)) sep = argument2; else sep =

chr(13)+chr(10);

 fid = file_text_open_write(filename);

 if (fid > 0) {

 for(i=0; i<ds_list_size(argument0); i+=1) {

 if (i != 0)

file_text_write_string(fid,sep);

file_text_write_string(fid,string(ds_list_find_va

lue(dsid,i)));

 }

 file_text_close(fid);

 return 0;

 }else{

 return -1;

 }

}

Load Script

/*

** Usage:

** dsid = ds_list_load(filename,separator);

** Arguments:

** filename file path to save the list to

** separator string used as separator

between elements (optional)

** Returns:

** ds_list id if successful, or (-1) on error

** Notes:

** If separator is not given, each list element

must be on a separate line.

** If separator also appears within data, the list

will not load correctly.

** GMLscripts.com

*/

{

 var dsid,filename,sep,fid,dat,len,ind,pos;

 filename = argument0;

 if (is_string(argument1)) sep = argument1; else sep

= chr(13)+chr(10);

 fid = file_text_open_read(filename);

 if (fid > 0) {

 dat = "";

 while (!file_text_eof(fid)) {

 dat += file_text_read_string(fid);

 file_text_readln(fid);

 }

 dat += sep;

 len = string_length(sep);

 ind = 0;

 dsid = ds_list_create();

 repeat (string_count(sep,dat)) {

 pos = string_pos(sep,dat)-1;

 ds_list_add(dsid,string_copy(dat,1,pos));

 dat = string_delete(dat,1,pos+len);

 ind += 1;

 }

 file_text_close(fid);

 return dsid;

 }else{

 return -1; }

}

Contributors

Thanks to xot and Leif902 (Leif Greenman) for creating the

script.

Eyas Sharaiha

Powered By:

Script of the Month SCRIPTS

GMLscripts.com

http://gmlscripts.com/

31 | P a g e July, 2007 http://markup.gmking.org

G
R

A
P

H
IS

BAD
'Chain Chomp' has a textured dark

background. There is no need for a

rocky looking background because it

has nothing to do with the game and

only adds distraction. Even worse,

the main character has very few

colors, and it very dark like the

background. If the game were to use

better graphic techniques, it would

look more professional.

Graphic Design

mapping that makes your computer cringe.

However, the game rocks - say what you

want – and it rocks without any of those

special effects.

Style
Using real photos, or heavily textured

graphics in puzzle games can make the

game all blend together and too hard to

play. They need simplified graphics, that

are easily recognized by the player. Some

of the best games you will notice, have

cartoon-like graphics, with a black 1 pixel

outline on everything. This makes it all

very easy to see, no matter what the

sprites are in front of. Now obviously, an

RPG with more detailed graphics will take

much more time, but in the end, it will

look amazing if done right.

Priority
The colors of your objects is very

important in any type of game. Too many

game makers use a stunning background

that is way too busy for their game. The

background is just what it sounds like, it's

to be left in the background and not

distract from the rest of the game at all.

Effort!
Fixing up graphics really does not take up

much time. I hope this article has taught all

the developers out there that putting a

little more effort into the thought part of

their games' graphic design can make all

the difference!

Dan Meinzer

Most developers using GM forget that

their main way of conveying

information to the user is through

graphics. Nearly all the relevant info

the user needs to play the game is

given with sprites, backgrounds, text,

and all sorts of images. Particles tell

you when something is being hit, or

maybe when the thrusters are on.

Sprites animate to signify that

something is moving, or trying to at

least. And even when developers know

how critical graphics are to their

games, they often overlook it. On any

given day, you can find a handful of

bad games, and a handful of good

games. In 95% of the cases, the good

games will have clear, easy to see

graphics, and it will all look nice and

clean. The bad games will have

distracting backgrounds, sloppy

layouts, and sprites that make your

eyes bleed. There is no reason for this!

With little knowledge of even MS

Paint, anyone can fix up their games to

look nice.

Uniformity
All games need to have a standard

drawing style for all the graphics. While

this can sometimes be difficult with

multiple artists, but it's definitely

achievable on any project. If anyone takes

a look at Company of Heroes, and then

takes a look at Command and Conquer,

they will definitely notice the different art

styles. Use whatever is best for your

game! Puzzle games need simple art, that

is easy to see and understand.

Minesweeper is a great example of this.

The game does not have any new next

generation blur affects and normal

GRAPHICS

 “But g00d gamezzz dont n33d graphix! „

GOOD
'Seiklus' has cartoon-like sprites that

all have a distinct black outline. This

makes having a white character on a

bright background possible without

making it hard to see. The simplicity

in the graphics is also consistent

throughout the game and nothing

looks out of place.

GOOD
Objects in 'Wubly 2' are color coded.

The most important objects are lime

green, crimson red, or sharp pink,

while the walls are left a navy blue,

which is closer to the background

color.

32 | P a g e July, 2007 http://markup.gmking.org

ED
ITO

R
IA

LS

Sounds in Games: How Far?

There is no doubt that sounds and

music have a crucial part in games –

but the true question is: How much is

too much?

I’d certainly like to listen to background

music, and I’d certainly like to hear

some sound effects whenever I do a

certain action, but at what point does

sounds become a downgrading

experience to the game?

To be able to come to a correct, logical

answer – we need to differentiate

between various types of sounds – as

each one has its own type of

limitations.

Sounds include background music, and

sound effects. The sound effects group

itself could be divided into two: those

you listen to when clicking buttons, and

interacting with the game’s UI, and

those you get form the characters

themselves: such as the sound of them

talking, their steps, gunshots, etc.

Though the article is more aimed at the

higher limit for sounds – how much is

too much – I’ll also be discussing the

must-have sounds as well – the

‘minimal requirements’ for games.

Background Music
Background music is an essential part

of a game, and my personal

recommendation is: at no point in the

game – be it Game Play or just

interacting with the interface – should

there be no background music at all.

This may be thought of as – there is no

“too much” background music, and

when it comes to quantity: it’s true; but

there are certain types of music which

cannot and should not be implemented

in certain areas. Though in menus,

option screen, and other similar

situations, there might be no need for

background music, I certainly think

there should be.

The type of music to be present at such

areas however must – I repeat: must –

be different (in terms of tone and

mode) from what is present in the

gameplay. Such music should be

calmer, and it must not be loud.

EDITORIALS

Though it’s a good idea to make

something “exciting” that would

generate some enthusiasm for the

player, you must remember it should

be low and transparent. That is not the

case when the game is being played;

sounds are now part of the gameplay –

and should be louder, more exciting,

and be directly related to the tone of

the game.

However, even in the Game, you must

be very careful that the background

music does not degrade the sound

effects in the game; you should be

able to hear all the players speaking,

you should be able to hear the sounds

of buttons you’re clicking, and steps

the players are making.

Sound Effects
Sound effects that need to be in the

game form a huge range of different

GM Cash 1.1

Q
U

IC
K

 R
EV

IE
W

 GM Cash is a Game Maker 7 extension

that adds more Drag n’ Drop actions to

the object properties window.

The library added allows the game

developer to add links and commands

that the user could use to donate to the

game’s developers, or just pay to get a

full version of the game.

The extension library supports 8 stores at

its current version, these include PayPal,

ShareIt, Payson, Ebay, VSTORE, MyStore,

Mal’s Ecomerce, and OSCommerce. It

also has support to be used with the YoYo

Games community and the Game Maker

Community.

The extension requires Game Maker 7.

Get it now!
http://xrl.us/gmcash

http://xrl.us/gmcash

33 | P a g e July, 2007 http://markup.gmking.org

ED
ITO

R
IA

LS

Sounds in Games: How Far?

types of effects. Out of the many

possible sounds, I thought the following

need to be included in a game:

 Bullets

 Bullets colliding with wall,

player, and enemies

 Buttons being pressed

 Steps (preferably for different

materials)

 Players taking

 Vehicles

Extra sounds that would be nice to be

added – but not required for all games –

are those that would add excitement to

the game, but without them the game is

not “silent”, these include:

 Occasional “Oh, I’m hit!”

screams

 Dying sounds

 “Fire in the hole” and similar

screams on various occasions

 “Radio” when in vehicles

Of course, such sound effects do not

apply for all kinds of games, but it

certainly gives you a picture of what

could be included in your games.

One general piece of advice though,

sound effects must NOT be overused. If

you’re thinking about adding sound

effects to something that occurs very

frequently, like a button that might

pressed several times in 20 seconds,

then you might want to think again.

I know what some might be thinking:

what about footsteps? Sure, footsteps

are very redundant, and that is where

talent kicks in; footsteps should have the

same status that I gave to background

music in menus: it should be low and

transparent – something that could be

heard, but does not keep annoying the

EDITORIALS
player.

Conclusion
Sounds need to be included in the

game, without them – a game wouldn’t

be as good. The challenge would be

knowing what types of sounds you

should put in, when they should be put,

and most importantly: when to stop.

As I previously said, redundant sounds

effects should be avoided, and so

should using the same sound effect for

multiple actions. As for background

music, you should know when it should

be low and when it should be higher,

when it should be calm and when it

should be more exciting, as well as the

quality and types of sounds to be used

all over.

Eyas Sharaiha

FATAL

R E V I E W S

FATAL is described as a “fast paced

SHMUP”. You’d be hard pressed to argue

against that. Within seconds of starting,

you find yourself surrounded by bullets

from various enemy craft whilst you fire a

seemingly inexhaustible armory of bullets.

It’s hard to last for long at all and obvious

to see why you start with five lives rather

than the more traditional three.

You can automatically see that the game

will have a retro feel to it. The graphics

are formed of very simple, similar looking

ships and lines to give a feeling of depth.

Similarly, the sound is the collection of

squeaks and beeps that one expects to

hear off a classic arcade machine. To me,

this is a very admirable quality as I’ve

always been a fan of very retro game.

The controls are fairly easy to grasp. You

use both hands and are spread out well

across the keyboard. The three action

keys are close together which may be

easy for some, but others may find

difficult – slipping and pressing the

wrong key or doing so because of not

paying enough attention proved

problematic for me.

As ever there are cons to the game.

Being a work in progress, it is typically

lacking in features. But that will

undoubtedly change. ChIkEn believes

that the game will eventually sell for

almost 23 USD, so it will almost certainly

be abundant in features.

I look forward to the end version of this

game. With more craft to choose from

and different modes of play, it will be

great to play. I probably won’t be buying

the full version, but I hope it will be

worth the money. It is certainly one of

the most underrated games in the GMC

at the moment.

Some Information

Creators: ChIkEn AtE mY dOnUtS and

Coffee.

Download link: here.

“Grego” Tyler

http://www.willhostforfood.com/files/19694/_FATAL_.zip

34 | P a g e July, 2007 http://markup.gmking.org

R
EV

IEW
S

Bounce 2

What they say
In BOUNCE 2 you control a ball that you

have to try and guide to the end of the

level. You have to avoid obstacles by

bouncing on different colored blocks

which alter your bounce height (blue

makes you go higher, red lower, etc).

You will use many objects and power-

ups to reach the end of each level.

Review
This game takes a simple concept,

guiding a ball to the end of a level, and

adds in different elements to make the

game harder as you progress.

The ball you control is constantly

bouncing, by using the left and right

arrow keys you can change the

direction in which the ball travels. In

order to reach the end of a level you

have to avoid the many obstacles

which lie in your path. At first these

are just a maze of walls which the ball

must be guided through, but later in

the game dangers such as spikes and

electricity are added which, if touched,

send you back to the start of the level.

By manoeuvring your ball so it hits

different coloured blocks your bounce

height is adjusted enabling you to reach

high platforms and duck under

obstacles. Blue blocks make the ball

bounce higher, whilst red blocks reduce

the height. There are also yellow

blocks which blast your ball up high so

you can reach the portal to the next

level.

Some strategic thinking is needed if you

are to reach the end of some level

successfully on your first attempt.

Blasts of electricity can be turned off by

bouncing on the appropriate colored

switch and fans can be used to blow

your ball both to your advantage and

disadvantage.

Thankfully a save and load game

feature is included, otherwise you may

REVIEWS

get bored of playing through the 50

levels (including the levels from the

original ‘Bounce’) consecutively.

Many who played the game criticized

it, saying that if you keep the ball over

a red block too long. As the bounce

height is constantly reduced eventually

the ball becomes stuck and cannot be

moved off the block, resulting in an

irritating noise being played until the

level is reset. Obviously this adds

another risk to the game which the

player must overcome to complete a

level but the opinion of some seems to

be that this is too much. Personally

I’m not too bothered by it, however I

did become stuck a couple of times

whilst reviewing this game which was

a minor annoyance.

Sounds do become repetitive and you

will probably recognize some of them

from other applications when you play

the game for the first time.

Fortunately there are options to toggle

both music and sound effects.

Philip Gamble

SU
M

M
A

R
Y

0

2

4

6

8
Graphics

Sound

MusicGameplay

Overall

Information
Download Size: 2 MB

Download Link: xrl.us/bounce2

Download Type: Zipped Executable

Released: July 2006

Author: SuperCasey4

Review Summary
Graphics: Adequate, not perfect

Sound & Music: Becomes an

irritation, too repetitive.

Gameplay: Very simple controls,

‘sticky’ issue

Overall: A nice idea enhanced by

power-ups and obstacles

35 | P a g e July, 2007 http://markup.gmking.org

R
EV

IEW
S

Snow Ball War

What they say
They say it’s a classic game of Capture

the Flag. You and a team of blues fight

the reds for the flag. Click once to get a

snow ball ready, click again to throw. If

you get hit you will be sent back to the

nearest spawn point. It’s primitive but

addicting!!

Review
Snow Ball War definitely falls into the

category of mini-game. It is based on a

concept used in several Flash games

where you control a member of a team

in the weather dependent sport of

snow ball fighting. This has also been

seen in games of a similar nature

where instead of snow a catapult or

grenade can be used to inflict damage

on your opposition.

The AI in Snow Ball War is

unquestionably clever, it is realistic in

the decisions it makes and it isn’t easy

to avoid your rivals at all. That said by

running around obstacles you are able

to dodge the snowballs which the red

team will through at you, and grab the

flag from your opposition’s base which

makes the game winnable.

Your own team however is not

supportive of your efforts to go and

grab the enemies’ flag, instead tending

to throw snowballs at any opposition

they see and engage in their own mini

war against the computer’s team.

Unlike many mini-games there are a

number of levels to choose from, 4 in

fact, each with its own terrain and a

different number of participants.

One snowball can hit multiple people,

obstacles to navigate around as

snowballs can be thrown over them to

hit someone on the other side.

Other realistic features such as the fact

that you have to gather snow before

you can throw each ball, and that balls

can only stay in the air for a certain

distance further enhance gameplay.

However it isn’t all fun and games, the

screen view is very small and whilst the

graphics are adequate for basic

gameplay they could easily be

improved. There is little noticeable

REVIEWS

variation in the different levels

available either. If more customization

was added to this game it could be

much more fun, and with such a

simple a game a level editor enabling

players to create their own snowball

arenas would also be a useful addition.

Philip Gamble

and an added realism is that you can be

hit by members of your own team.

Perhaps one problem is the one-hit

health each snowballer has. You are

forced to respawn each time you are

snowballed – a health bar indicator

above a player with three-hit health

would be more realistic and would give

you a longer chance of fighting your

opposition.

The blocks in the game serve only as

SU
M

M
A

R
Y

Information
Download Size: 1MB
Download Link: xrl.us/snowball
Download Type: Zipped Executable
Released: July 2007

Author: Beat22

Review Summary
Graphics: Could be easily improved,

no much variation

Sound & Music: Non-existent

Gameplay: No real bugs, smooth

AI: Your opposition are effective in

both capturing the flag and

defending their base. Let down by

your own team’s choice of tactics.

Overall: Simple concept which

should have been built upon

further.

0

2

4

6

8
Graphics

Sound & Music

Gameplay

Level Design

AI

Overall

http://xrl.us/snowball

36 | P a g e July, 2007 http://markup.gmking.org

every month.

Before I start with all of the thanks, I

have an apology first; sorry to Leif

Greenman who also was a contributor

in the Script of the Month for issue 5

but was not mentioned. Contributors in

scripts at GMLscripts.com are now

mentioned in articles.

Again I want to say how much I

appreciate the support we got from

various Game Maker sites. First and

foremost, thanks to YoYo Games for the

continued endorsement and support of

MarkUp.

Thanks to GameMakerBlog.com and

GMLscripts.com for the continued

contribution to MarkUp Magazine. Also

thank you for GameMakerResource.com

for all the work that they have done in

And so it ends: another record-

breaking, content-packed issue of

MarkUp magazine!

MarkUp Issue 6 also celebrates the half-

year anniversary of MarkUp magazine!

We are thrilled by the amount of

support, feedback, and contribution

MarkUp has gotten in the past six

months.

We are also thrilled about the growth of

MarkUp magazine, in terms of content,

readership, and yes: community

support.

The entire MarkUp staff is

overwhelmed with self-satisfaction.

After all, we have not only delivered an

excellent publication for six months, but

also managed to deliver such a content

packed issue on-schedule: each time,

TH
E W

R
A

P
 U

P

Until Next Time!
THE WRAP UP

the previous issues, and we’re looking

forward for more participation in the

future.

MarkUp has grown in an overwhelming

way in the past six months, but we still

aspire to more growth which can only

be done by your continued support and

contributions. To contribute to the

magazine you could visit the MarkUp

forum here.

The quality of MarkUp magazine is

expected to improve continuously as we

get more readers and supporters.

Remember that even if you cannot

contribute in terms of articles to the

Magazine, we won’t improve if you

won’t give us your much appreciated

opinion.

Once again, thanks for your support!

The MarkUp Staff

Markup is an open publication made possible by the contributions of people like you; please visit markup.gmking.org for information on how to

contribute. Thank you for your support!

©2007 Markup, a GMking.org project, and its contributors. This work is licensed under the Creative Commons Attribution-Noncommercial-No Derivative Works 2.5 License. To view a

copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/2.5/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Additionally, permission to use figures, tables and brief excerpts from this work in scientific and educational works is hereby granted, provided the source is acknowledged. As well, any

use of the material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as

revised by P.L. 94-553) does not require the author’s permission.

The names, trademarks, service marks, and logos appearing in this magazine are property of their respective owners, and are not to be used in any advertising or publicity, or otherwise

to indicate sponsorship of or affiliation with any product or service. While the information contained in this magazine has been compiled from sources believed to be reliable,

GMking.org makes no guarantee as to, and assumes no responsibility for, the correctness, sufficiency, or completeness of such information or recommendations.

Be sure to check out…

GMking.org – the network behind MarkUp – also supports developers in various ways. GMking.org provides Game Maker

developers with excellent resources, as well as other developers from other IDEs.

MarkUp has sister projects, also developed and maintained by GMking.org, all meant to help Game Developers. To learn

more information about your Game Platform of choice, you could check out GMPedia.org. GMPedia is a game development

wiki with a growing community-base and content.

You can also listen to our audcast – GMPod – related to the Game Maker Community and its events by viewing the Audcast

page on the GMking.org main page.

http://yoyogames.com/
http://gamemakerblog.com/
http://gmlscripts.com/
http://gamemakerresource.com/
http://forums.gmking.org/index.php?showforum=31
http://markup.gmking.org/
http://creativecommons.org/licenses/by-nc-nd/2.5/
http://gmpedia.org/
http://gmking.org/drupal/audio

